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Abstract. A new circle estimator is proposed for solving heavy subpixel error 

on circle center in the case of noticeable distortion. It is based on an innovative 

point of view over active contours process blending mathematical morphology 

and electronic phenomenon that furnishes a multi-level image in a single pass 

from the approximated form of objects to a full detailed one. A comparison 

with least-mean squares method supports that a sensitive improvement can be 

obtained compared to a more classic method. 
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1   Introduction 

Active contours have been developed to overpass the limitations of classic 

segmentation tools as filtering, for example, leads to problems of segmentation as 

unconnected or incomplete contour, notably due to contrast variation, difficulty to 

find optimal parameters, noise, etc. Active contours are one of the best known and 

widely used solution to avoid these problems. The limitation of these methods is to 

give a unique representation of the form that can be assimilated at the scale of the 

representation, only allowing to have n scale representation at the price of n 

computation cycles. Contrariwise, mathematical morphology [1], [2] furnishes a tool 

that corresponds to this idea of multi-scale representation. Geodesic dilation is one of 

the basic mathematical morphology techniques, related to geodesic reconstruction and 

watershed algorithm. Although mainly numerical implementations of these techniques 

are available for usual real time applications [3], [4], an intuitive interpretation of 

these operations allows high speed imaging. A known limit of geodesic operators is 

that they do not take into account the regularity of the shape of the objects. But, the 

second connexity notion, developed by J. Serra in [2], leads to consider non-adjacent 

objects as being connected. In this context, the authors have decided to explore a 

possible generalization to the regularity of the shape of the objects. Authors have also 

noticed that another aspect is very important for the notion of objects’ regularity: The 

scale from which the object is observed but multiscale analysis needs multiple wave 

propagation. In order to be compatible with high speed imaging, authors have studied 

a phenomenon producing propagation of wavefronts that have an increasing regularity 

along the height of the transition part. It is presented in the following section.  
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2 Active Contours 

Let us consider a bidimensional regular discrete (N,M) length grid Ω on which the 

following bistable diffusive system is defined: 
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where Dn,m is a local diffusion parameter and a , a threshold parameter. 

The system is completed by the Neumann conditions (zero-flux conditions) on the 

border ∂Ω of the definition domain Ω, so that: 
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where ∂/∂η denotes the outer derivative boundary. 

The study of this system leads the authors to consider the emerging propagation 

phenomena over homogeneous and inhomogeneous grid cases to deduce a generic 

image processing method. 

2.1   Homogeneous Grid Case  

In order to simplify, the local diffusion parameter is considered as a constant 

( ),  n,m    .n mD D= ∀ ∈ Ω  (3) 

This is a discrete version of the FitzHugh-Nagumo partial differential equation (PDE). 

In the uncoupled case, i.e. when D=0, vn,m=0 and vn,m=1, ∀{n,m} are two attracting 

steady states, while vn,m=a, ∀{n,m} is an unstable equilibrium point of the system, 

acting as a threshold. In case of strong coupling, i.e. when D is large, we expect that a 

traveling wave will propagate depending on the value of a with a constant speed so 

that if a<½ (a>½ resp.), the steady state v=1 (v=0 resp.) will propagate at the 

expense of the steady state v=0 (v=1 resp.). When a=½, no propagation occurs.  

The response system also depends on initial conditions. For example, a marker, 

defined by vi,j(t=0)=1 for a set of (i,j) values and vk,l(t=0)=0 otherwise, imposes the 

kind of traveling waves due to its symmetry. The two main propagating structures are 

the planar and the circular wavefronts. 

Planar Waves. They emerge from a rectangular marker (Fig. 1-A) where two planar 

wavefronts propagate in opposing directions. Such propagation reduces the system to 

a one-dimensional problem that gives us: 
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Fig. 1. A) A planar wavefront propagation using a grayscale representation where white 

corresponds to v=1 and black v=0. Top left inset shows the marker. Other insets illustrate the 

propagating wavefronts at different times in a.u. (arbitrary units). B) v100,n at different times 

corresponding to the insets of Fig1.a), illustrating the constant velocity. Dot line: marker, 

continuous lines:  propagating wavefront at t=40, 80 and 120 a.u.. Parameters: a=0.1, D=1. 

This system has been widely studied and some important results can allow us to 

characterize the process of propagation, although no explicit overall analytical 

expression of the wavefronts is available. Among these results, the differential-

difference can be written in a case of strong nodes coupling, using continuum 

approximation: 

( )( )1  .
v

v v v a v
t

∂
= ∆ − − −

∂
 (5) 

Where ∆ is the laplacian operator. A traveling-wave analysis allows us to express the 

traveling wave profile, considering initial conditions ξ0 and ξ=n-ut, and its velocity u: 
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In equation (6), one can notice the inverse relation between D and the width of the 

wavefront that remains true even in a discrete system. Equation (7) highlights the 

importance of the parameter a value compared to ½ and that the velocity increases 

when a decreases. The ± symbol in equation (7) corresponds to the bidirectional 

propagation. These remarks stay qualitatively valid in the discrete case. 

Moreover, a major feature due to discreteness is the failure of the propagation when D 

is smaller that a critical non-zero value D∗ >0, which is missed in the continuum 

approximation. In this case, the wavefront is pinned [5, 6]. From [6], an asymptotic 

expression of this parameter when a→0, is 
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Circular  Waves. Circular waves emerge from a circular or almost circular marker or 

from a marker containing a circular symmetry as illustrated in figure 2. 

  

Fig. 2. A) A circular wavefront propagation using a greyscale representation where white 

corresponds to v=1 and black v=0. The top left inset shows the marker. The other insets 

illustrate the propagating wavefronts at different times in a.u. (arbitrary units). B) Propagation 

velocity versus the diffusive parameter D. Numerical results comparison between planar wave 

speed (continuous line) and circular wave speed (dot line). Parameter a = 0.1. 

The spatial shape determines the velocity of the wavefronts, so that, in a continuous 

system [7], a convex traveling wave propagates slower than a planar one. This 

comportment is verified as it can be seen in the comparison between planar wave 

speed and circular wave speed when D increases (Fig. 2). When D decreases, the 

circular propagation is replaced by a multi-planar propagation with different wave 

vectors as the wavefront width becomes smaller and is confronted to the discreteness 

of the system. That is to say that for, a small value of D, planar and circular 

wavefronts are merged. In addition, propagation fails for the same value D* of D. 

From now on, we will assume that D* is not a function of the kind of traveling waves, 

but only determined by the threshold parameter a. 

 

2.2   Inhomogeneous Grid Case 

Contrary to the homogeneous grid case, the point of interest is the blocking case. 

Indeed, it allows the control of the path of the topological traveling wave. An image is 

then defined as a discrete bi-dimensional grid where nodes correspond to pixels sites. 

Each node is coupled to its nearest neighbors in a diffusive manner weighted by the 

local intrinsic information of the image. The main idea is to initiate a wavefront and 

let it propagate until it reaches an object Θ to be detected. In order to prevent further 

propagation, we now impose the following rule: 
 

( )*
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
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I.e. the wavefront cannot propagate in the object (D=0) and is limited to the borders of 

Θ. Contrariwise, the propagation is possible since the marker (or a part of the marker) 

is outside the object (Dp>D*) (Fig. 3-A). The relationship between the diffusive 

parameter D, the width W and the thickness T of the corridor has been studied and is 

presented in Fig. 3-C. A critical value, Dm, of the diffusive parameter leads to a no 
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propagation of the wavefront (Fig. 3-B). Obviously, the larger and thicker the corridor 

is, the wider a propagating wave can be, therefore, Dm increases. As discussed in the 

following section, this property can be interesting to integrate objects or to develop 

active curves. 

 

Fig. 3. A) Propagation of a wavefront in an inhomogeneous grid. Inset (a) shows the initial 

marker and an object Θ. Inset (b) shows the wave front crossing the corridor separating the two 

parts of Θ at t=100 a.u.. Inset (c) shows the propagation of a circular wave emerging from the 

corridor at t=200 a.u.. Inset (d) shows the final stationary state, obtained at t=300 a.u.. B) 

Unsuccessful propagating wave (D = 1.2) C) Diffusive parameter D versus width W; curves for 

different values of thickness T of Θ. When D is above this curve, the wavefront is pinned. 

When D is beneath this curve, the wavefront can cross the corridor and propagate. Parameters: 

a=0.1, D=1, W=6 nodes, T=4 nodes. 

2.3   A Generic Image Processing Method 

Let A and B denote sets or indicate sets functions or even grayscale image quantities 

as scalar-type results of some image processing (for example, linear filtering). A and 

B can derive from the same image or from different images. Here A represents binary 

marker from which a propagation phenomenon starts from, and B a topological 

constraint derived from the image. The couple of scalar discrete functions (A,B) 

defines the following equation:  
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(10) 

With a=0.1 and the definition domain Ω being the (n,m)−length grid. The system is 

completed by the Neumann conditions. A marker-rule is set so that the marker 

remains constant and equal to 1. This choice of constructing D(B) corresponds to a 

bimodal distribution of the local diffusive parameter separated by D*, allowing the 

control of the propagating paths. The propagation phenomenon defined by E tends to 

a convergence state noted vε
∞
(A,B), theoretically corresponding to infinite t but 

practically a millisecond value will be sufficient in most cases. Then, let us define the 

main image processing operator as: 
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Φε,h(A,B) = {vε
∞
 (A,B) ≥ h} . (11) 

The propagation phenomenon is similar to the geodesic propagation, but with an 

additive scale of regularity constraint, defined by the couple variables (ε,h) with ε 

defining the magnitude order of the scale of regularity of the one-pass propagation 

and h a thresholding along the scale regularity consequently to the choice of ε in the 

final result when the propagation is definitively blocked by the topological constraint. 

It is equivalent to fix ε and deduce h or to fix h and deduce ε. Eq. (11) leads to the 

immediate following properties: 

• When ε -→1+/D*, Φε,h(A,B) tends to the geodesic reconstruction of B marked by A. 

• Φε,h(.,B) is increasing with fixed regularity scale parameters and increasing with its 

two regularity scale parameters increasing independently. 

• Φε,h(A, .) is decreasing with fixed regularity scale parameters and decreasing with its 

two regularity scale parameters increasing independently. 

It allows the generation of many morphological-type analysis techniques, constructed 

as classic techniques through the morphological theory, but with some advantages 

from the point of view of active curves (considering the evolving front) or regions 

(considering the interior of the evolving curve) as their greater regularity, without the 

topological problems of the deformable templates. As illustrated by the experimental 

study, ε plays the rule of a main geometric scale parameter and h a secondary 

geometric scale parameter. The > sign produces an active geodesic region approach, < 

producing a dual region approach, whilst replacing it by = produces an active 

geodesic curve approach. For the following paragraph, c represents 1/ε.  

One of the main advantages that has not been illustrated is the one-pass multi-scale 

approximation. Considering the shape of figure 4, the propagation of the traveling 

wave has a comportment of viscous gauge (Fig. 4). Analyzing the grayscale resulting 

image gives us a set of multi-scale representations of the original shape (Fig. 5). Low 

thresholds give higher details and high thresholds furnish higher approximation of the 

shape. At limit of the domain of the image, i.e. in our case [0, 1], we obtain almost the 

initial shape for low threshold (~0) and approximation hulls for high threshold (~1). 

 

Fig. 4. Scale aspect: Hull effect (with inner and outer markers). Left: final state. Right: Shape 

and marker. Parameter c = 8. 
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Fig. 5. Secondary geometrical scale aspect of h. From left to right, then top to bottom, h 

increases in a ratio-2 geometrical manner from h = 0.0078 to h = 0.996. Parameter: c = 8. 

The figure 6 illustrates the effect of blockage depending on c. The more c increases, 

the less propagation penetrates in the porous medium. It works as if the propagation 

becomes more viscous. It could be interpreted as if each elementary part of the 

propagation front was blocked by a virtual dilation whose size is determined by the 

scale c. Therefore, c can also be denoted as the “scale of observation”. This 

phenomenon is useful for noised circles centre determination. 

 

Fig. 6. Scale aspect of c: Porosity effect (up: shape and marker, down: propagation blockage for 

increasing values of c from left to right and up to bottom: c = 0.1 to c = 1.75 by incremental 

steps of 0.15) 

3 Applications to Circles 

3.1 Samples 

A valuable application of these concepts is the measurement of circles, especially 

distorted ones. Indeed, an active contours approach of a distorted circle can lead to the 

obtainment of a more circular form (Fig. 7). So we consider a test set produced by 

modeling a certain variety of perfect and imperfect discrete circles. Circles 

coordinates are described by: 
 

( ) ( ){ }0 0cos , sin  .x E x r y E y rθ θ   = + = +   
 (12) 

 

E[x] being the nearest integer of x. 

Noise and distortion can be added to those circles by modifying the radius: 
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with Anoise a random variable of centered Gaussian density of probability and 

adistortion= a|sin(θ)sin(αθ)exp(-β (θ+π4
))|, a, α and β representing parameters of this 

deformation. 

With varying values of x0, y0 and r, we obtain a statistically significant set of test 

images to distinguish our measurement tools. Typically, noise and distortion 

amplitude are respectively set to 5 and 10 (Fig. 8). The relative scale unit is the pixel 

one. 

                         

Fig. 7. Left: initial image and final active contours image, Right: several thresholds of the final 

active contours image (i.e. several views at different scale) 

                               

Fig. 8.  Left: noised circle, Middle: distorted circle, Right: noised and distorted circle 

3.2 Radon Based (RB) Method 

The main idea of the method is to describe a circle by its tangents to access to circle 

radii. Indeed, three tangents i.e. three points are sufficient to compute circle 

characteristics and only two if we consider parallel tangents. The authors’ approach is 

to compute radii from those tangents and determine circle center by their intersection. 

Considering a discrete framework, each arc of the circle can be considered as a 

segment at a certain scale. Thereby, a discrete tangent can pass through one and, 

generally, several pixels. 

That is why the authors use the Radon transform to find tangents [8]. As the Radon 

transform converts an image (x,y) into a new domain (ρ,θ), it is obvious to isolate the 

lines which include the most of pixels because they correspond to maxima in the 

upper and lower parts of the signal. Although these lines do not always correspond to 

tangents, they are even so neighboring. In the continuation, these lines are considered 

as circle tangents. 

The first step is to find each couple of tangents at the discrete angle θi  (θi Є [0, pi[). 

To that end, the Radon transform is separated into two parts at the level of the 
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barycenter for all discrete angles to obtain the upper and lower parts of the original 

signal. This allows to correctly identify each maximum in each part of the signal.  

Once these maxima found, radii can be computed by considering the mean of the 

parameter ρ of the tangents for each θi in the Radon domain. For simplification 

purpose, the value of that point is set to the mean of maxima. To enhance results, a 

fitting is done on data considering the parametric representation of an image point, 

here the circle center, in Radon domain. 

The authors use a trust region algorithm [9] for nonlinear least mean squares. To 

improve the fitting, it is necessary to suppress unlikely points that imply a loss of 

precision when noise or distortion is added. The implemented method is an iterative 

α.σ method where α decreases along iteration. In order to have the radius of the circle, 

a mean of the distance between each tangent is done. 

3.3 Results 

To have a point of comparison, the authors use a classic least-mean squares (LMS) 

method for circles [10]. Results are presented in the tables 1 and 2. Both methods 

have been applied on initial simulated circles, then on edge of several threshold (i.e. 

several scale) of the active contours results. The first conclusion is that the RB 

estimator is not adapted for perfect or noised circles. It only takes its interest in the 

case it is made for, that is to say the distorted circles. One can see that the active 

contours method does not significantly affected the precision of least mean square 

estimator. In the same way, even if an increase of precision is visible, it is only 

significant for distorted circles as heavy distortions are compensated. The difference 

of precision reaches nearly 1.5 pixel in distorted cases and nearly 0.84 pixel in noised 

and distorted cases in favor of RB estimator with a threshold of 128 and eight or the 

nine iterations. 

 

Table 1. Mean error of the least mean squares method 

Threshold Perfect circle Noised circle Distorted circle Noised & distorte circle

Initial image 0,014744 0,13226 2,1681 2,2607

2 0,022057 0,127 2,1448 2,0067

4 0,022057 0,12014 2,1448 2,0286

8 0,022057 0,11924 2,1448 2,0472

16 0,022057 0,11253 2,1448 2,0727

32 0,022057 0,11003 2,1448 2,0938

64 0,025468 0,10829 2,1367 2,1188

128 0,025539 0,11306 2,1377 2,1219

Mean error of the least mean squares method on circle center position (given in pixel)

Active contours
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Table 2. Mean error of the Radon based method 

Threshold Perfect circle Noised circle Distorted circle Noised & distorte circle

Number

of iterations 

needed

0 iteration 2 iterations 8 iterations 9 iterations

Initial image 0,44724 0,52831 1,5025 2,8024

2 0,40452 0,37137 0,77922 1,7336

4 0,40452 0,36452 0,77922 1,643

8 0,40452 0,34141 0,77922 1,6091

16 0,40452 0,41065 0,77922 1,4555

32 0,40452 0,33302 0,77922 1,5274

64 0,31284 0,35953 0,69957 1,2991

128 0,3853 0,34013 0,64396 1,1671

Mean error of the Radon based method on circle center position (given in pixel)

Active contours

 

4 Conclusion 

This paper has contributed a new approach for problems of circles measurement in a 

heavy distorted context. It consists on an active region algorithm that is able to furnish 

a multi-leveled image of a contour in a single pass combined with a Radon transform 

based estimator. Levels are defined by a granularity parameter that allows to focus on 

a particular scale. A more circular form can be obtained at a larger scale even if an 

error on the diameter is introduced. The circle estimator, resting on an approach of the 

circle by its tangents, furnishes a subpixel approximation of the center thanks to a 

fitting in the Radon parameter domain. Results, compared to various classic methods, 

show the adequacy of a pre-processing by a propagation of wavefronts combined with 

a tangential approach for measurement on distorted circles. 
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