
Xtractor: A Light Wrapper for XML Paragraph-Centric Documents

Youakim BADR

National Institute of Applied Sciences - Lyon

PRISMa - Production Engineering and Computer Science for Manufacturing Systems

PO Box 7, av. Jean Capelle 69621 Villeurbanne - FRANCE
youakim.badr@insa-lyon.fr

Abstract

The emergence of XML leads the development of

applications centric XML-documents. Often the

documents contain tagged paragraphs of natural

language texts. The extraction of relevant data from

paragraphs confronts with their irregular structure

hidden in the text and requires powerful extraction

patterns. Although a large spectrum of wrappers has

been conceived to mainly process HTML pages, the

wrappers cannot deal with semi-structured data and

cannot still take into consideration the natural

language processing. In this paper, we present a

specification language to write expressive and easy

extraction patterns by casual users in a regular

expression fashion. Moreover, we introduce the

Xtractor, which relies on linguistic parsing of

paragraphs and applies technical and natural

language dictionaries.

1. Introduction

Information Extraction addresses the problem of

extracting specific information from a collection of

documents formatted in HTML [1], XML [2] or

natural language text [3] [4]. On the other side,

wrappers are conceived to extract information from

web pages and return their results as structured data

tuples for mediators [5]. Many studies have been

investigated to build wrappers for HTML pages [6],

[7], [8] and recently for XML documents [9] as well

as free texts in the natural language [10].

Besides the lacks of wrappers discussed later in

the related work section, most wrappers fail to

extract properly relevant data from textual

information, even though the documents appear to be

structured in a highly regular fashion. Delimiters,

such as HTML tags, are not sufficient to trigger the

extraction of data, which is hidden in a tagged text.

Missing attributes, multiple attributes values, and

attribute permutations make wrappers fail to deal

with data of irregular structure (also called semi-

structured data).

On other words, wrappers, which are originally

designed to process HTML pages, cannot deal with

semi-structured data. The structure is irregular and it

is not easy to find some uniform syntactic clues,

such as delimiters, or even linguistic knowledge to

correctly extract the attributes. Moreover, designers

omit the operators of their wrappers (i.e. casual

users), which cannot easily maintain or customize

their wrappers without an expert support.

In this paper, we present an approach and

architecture to design a wrapper for a family of

XML documents, called Paragraph-Centric

Documents (thereafter PCD). PCDs are

characterized by tagged paragraphs of free text. The

motivation behind building wrappers for

documentary-like applications is driven by the

emergence of XML as standard exchange format and

data representation. The core idea of our wrapper is

threefold:

1- Process tagged paragraphs in PCDs with a light

parsing in order to associate tokens with entries in

linguistic and technical dictionaries.

2- Define a specification language for casual

users to design easy and expressive extraction

patterns in order to locate data of irregular structure.

3- Provide an abstraction level easy to understand

by casual users to refer to collections of words by

means of meta-words. The meta-words are defined

in dictionaries and used in extraction patterns.

Coupling paragraphs parsing and writing

expressiveness extraction patterns over meta-words

provide a convivial tool for casual users to customize

the extraction of semi-structured data in XML PCDs.

In this paper, we present the specification language

based on regular expressions and we illustrate the

implementation of the appropriate wrapper (called

Xtractor) based on text parsing.

2. Related work

Several researchers investigate approaches to

build wrappers [11]. The most primitive approach to

construct a wrapper consists of writing a program by

hand in some programming languages (e.g. Perl or

2-9525435-0 © IEEE SITIS 2005 - 150 -

grep). This approach is impractical because the

wrapper code is hard to maintain and cannot be

easily exported to different application domains.

Some researches propose specialized languages to

quickly construct wrappers or the concept

description frame of InfoExtractor [12]. Most of

these languages are expressiveness, but mastering

these languages still requires computer expertise.

Another class of approaches intends to automatically

generate wrappers [11] [8]. To the best of our

knowledge, these approaches only cover small

portions of the web pages with some regularity in

their structures. The work of [21] defines a family of

wrappers based on linear Finite State Transducers

(FSTs) [13]. In the context of wrappers, FSTs

recognize well the delimiters (e.g. HTML tags)

surrounding relevant data. They are also studied by

the natural language community to build electronic

dictionaries and perform text processing (e.g. lexical,

syntax and morphological analysis). But in many

cases, the wrappers based on FSTs [14] address

HTML documents and rely on their tags as

delimiters. In addition, they do not take into

consideration their capabilities for text processing in

order to extract data from natural text.

The approach, that we conceive, falls into the broad

category of manual systems that take into

consideration the construction of expressive

extraction patterns by casual users as well as the

extraction of relevant data from natural language or

telegraphic text. The extraction patterns are applied

to a domain of interest, which is well defined by

means of electronic dictionaries. A remarkable

characteristic of our approach consists of translating

the extraction patterns to Finite State Transducers

(FST) and then employs the FSTs to build electronic

dictionaries as well as parsing the text. Recent

advances in the development of sophisticated tools

for building FSTs (e.g. XRCE finite state tools [15])

and in the natural language community [16] have

fostered the development of complex FST systems

for Natural Language Processing.

3. Study Case

Our model relies on a mixture of specification

language for extraction patterns and linguistic

analyzer to retrieve relevant data. An interesting case

to study is the patient record. XML is a good

candidate to model patient records as PCDs and

gives semantic to their contents. The primary task of

the wrapper is to apply extraction patterns in order to

locate relevant data listed in paragraphs. The

wrapper returns the results as data tuples of

attributes.

For example, the Figure 1 (a) illustrates a

paragraph of prescriptions in a PCD. Each

prescription provides information about a sequence

of attributes to locate their values. In this case, the

attributes are dosage, frequency, medication, and

duration.

2 3 day

: 2 2

 – 2

of 1

(2 2

(2 3)

(1 ,)

pills times per of KARDEGIC during 2 weeks.

DOLIPRANE pills 3x/d during weeks.

ATARAX tablets morning-noon-evening for 2 wks.

take 2 and half pills SECTRAL 3 times, pill CYSTINE B6

 (a)

(2 pills, 3 times per day, KARDEGIC, 2 weeks)

 pills, 3x/d, DOLIPRANE, weeks)

(2 tablets, morning-noon-evening, ATARAX, 2 wks)

 and half pills, times, SECTRAL, null

 pill, null CYSTINE B6, null

(b)

Figure 1: Medical prescriptions

A wrapper is supposed to analyze the paragraph

content, locates the attribute values from each

sentence and then returns a set of prescription tuples

as shown in Figure 1 (b). Finding relevant data in

these prescriptions requires powerful extraction

patterns with a substantial attention for end-users.

4. Specification Language for Patterns

4.1. Information Extraction

Our original motivation in developing our

wrapper, Xtractor, is to build a system that is more

appropriate to the Information Extraction task rather

than a full text understanding system. In our context,

Information Extraction from XML PCD documents

is a kind of documents indexing. The relevant data

can be stored in a database and exploited later as a

decision support.

For a given domain of interest, such as the

medical domain, there can be fairly elaborate

dictionaries for describing most of words in

paragraphs. Often, Information Extraction reveals

attributes in those dictionaries hidden in paragraphs.

An important aspect of Information Extraction is the

designing of extraction patterns able to describe the

accurate context for relevant data. The core idea of

our wrapper is to process progressively tagged

paragraphs in PCDs with light parsing in order to

tokenize sentences and associate tokens with

lexemes in dictionaries.

4.2. Dictionaries for domains of interest

For a domain of interest, such as the medical

domain, we elaborate dictionaries for describing

frequent words in prescriptions. A dictionary is a flat

file of entries; each entry defines a lemma followed

by its canonical form and a list of meta-words, which

 - 151 -

_ ___

the lemma belongs to. For example, the following

entries:

Doliprane, Doliprane 200 : <medication>
Cystine, Cystine B6: <medication>, <vitamin>

denote the lemmas Doliprane and Cystine and their

canonical nouns. We also notice that medication and

vitamin stand for meta-words, which referred by

<medication> and <vitamin> in the extraction pattern.

Thus, the <medication> meta-word can be one of the

lexemes Doliprane or Cystine and other medication

defined in the dictionary. Often, it is as well useful to

define compound words as lemma entry in

dictionaries and associate it with a meta-word for a

high level of abstraction (e.g. <tumor>).

We distinguish two sets of dictionaries:

dictionaries of the current natural language e.g.

English, and dictionaries of the current domain of

interest e.g. the prescription domain. In spite of the

large spectrum of frequent words, we build many

dictionaries to cover the prescription domain (e.g.

medications, diseases and symptoms). Afterward,

dictionaries will stand for either build-in or add-in

dictionaries interchangeably.

xmedication ="([A-Z]+)";

xdosage=".*([\\d]|(?:[\\d] (?:and half|and quarter) [\\d]) |(?:[\\d]

(?:and|or) [\\d]/[\\d]))?((?: pill|tablet|capsule)[s]?)";

xfrequency=".*(([\\d](?:(times|x) (per|\\/)? (day|week)[s]?)) |

(morning-noon-evening) | (1-1-1)).*;

xduration =".*(?: (((?:during)|(?:for))(?:week|wk)?[s] ?) |

 (?:per)(?:day|d)[s]?)";

medication = <medication>

dosage = <NB> <dosage-unit>

frequency=<NB>(times ? per |x/)<period>|(<part-day> - ?)*

duration=(during | for | per)<time-unit>

pattern = { medication +, dosage, frequency, duration? }

Figure 2: Regular expressions (upper side)
and their abstraction (lower side)

4.3. A Glance at Regular Expressions

Regular expressions are widely regarded as a

precise and succinct notation for specifying a text

search. Many people routinely use regular

expressions to specify searches in text editors.

Regular Expressions seem to be a good candidate for

manual patterns. Relevant data can be well located

by describing their context and their characteristics

in regular expressions fashion. Indeed,

characteristics such as multiple values, missing value

and permutations can be easily simulated by using

basic operators like kleene (*), optional (?), union (|)

and concatenation (.). Complex regular expressions

can be built up from simpler ones by means of

regular expression operators and parentheses.

Because regular languages are closed under

concatenation and union, the basic operators can be

combined with any kind of regular expression.

Practically, this solution is not elegant and

convenient, and it theoretically increases the

complexity of the problem. Regular expressions

offer a new perspective for designing matching and

extraction patterns. This perspective is particularly

relevant to search texts pre-processed by linguistic

tools. As we demonstrate in the next paragraph,

extending regular expressions can broadly be

regarded as precise and concise notations for

specifying patterns in order to search pre-processed

texts.

4.4. Extraction Patterns

The syntax of regular expressions can be

extended by words and meta-words over text. Such

convenient extension allows a concise and

expressiveness syntax. As shown in Figure 2 (upper

side), long regular expressions with multiple nesting

levels and operators become unreadable and hard to

maintain. Thus, we introduce three layers to

decompose long regular expressions into modular

patterns, called extraction patterns. These layers are

terms layer, expressions layer and slots layer. Casual

users use to build extraction patterns by means of

layers and assign one or more extraction patterns to

each tagged paragraph in the PDC.

For the sake of compactness, we define

informally these layers; we point out that a future

work will define formally the specification language

and provide necessary preliminaries and tools. We

start with the definition of each layer and we

illustrate them by examples.

Definition (Terms Layer):

A term represents an abstraction of linguistic

information over text vocabulary. A term t is either:

� A form: a sequence of letters delimited by double

quotes e.g. “cholesterol” that matches itself.

� A formal symbol: is a predefined form to describe

a number <NB> and any word <MOT>.
� A meta-word: a reference to one or more lemmas

in dictionaries e.g. <medication> indicates all lemmas

in medication dictionary. The declarations of meta-

words are specified in the construction stage of add-

in dictionaries.

Definition (Expressions layer):

The expression layer contains a finite set of

expressions; we denote by an expression a

concatenation of terms separated by separator

operators (i.e. white-space and tabulation).

e.g. <NB><month><NB> and <day>
We say that an expression holds if we find a

sequence of terms that matches the expression.

 - 152 -

Definition (slots layer):

A slots layer is made of alternates of expressions,

we denote the alternate operator by | (pipe).

For example, the following four expressions of

date in one slot cover all possible date formats:

<NB> <month> <NB> | <NB> ’/’ <NB> ’/’ <NB> |
<day>‘,’<month><NB>’,’<NB>|<month><NB>‘,’<NB>.

We say that a slot holds if one of its expressions

holds. A slot identifies relevant information or an

attribute value defined by different contextual

delimiters.

Definition (Unary operators):

Unary operators are applied on expressions to

specify occurrences or repetitions. The unary

operators are: kleene (*), optional (?), and one-or-

more (+). We note that the use of parentheses

changes the priority.

e.g. <international-code>? “phone:” (<NB>+ “-”)*

Definition (extraction pattern):

An extraction pattern P over a paragraph p is a

finite and unordered set of slots. |P| denotes

cardinality of P (i.e. number of slots). We mention

that all slots in an extraction pattern occur without

order. Furthermore, an extraction pattern of

cardinality |P| has |P|! possible combinations of slots.

As a result, an extraction pattern locates matching

sequence of slots in any order.

For example, the extraction pattern of three slots

(e.g. medication, dosage and frequency) has six

permutations, it locates all possible sequences and in

any order of slots.

Conditions on slots order:

To constrain the search or define sub-sequences of

some slots, we introduce the condition notation by

means of forbidden and allowed. In a brief, the

forbidden condition on a sub-sequence of two or more

slots eliminates the sub-sequence in question from

the all-possible combinations of slots. In contrast to

forbidden, the keyword allowed restrains the sub

sequence to appear in such order in each possible

combination.

Tagging relevant data:

Since the extraction patterns are slightly regular

expressions, it is convenient to mark up relevant data

once the regular expression holds.

L */�
*/

LRQ = ;

*/

= ;

or on

= ;

= on of

 = on of

GLFW RQDU\ dictionary_name: /* one or more dictionaries

/* one or more expressions

H[SUHVV expression_identifier concatenation of terms

/* one or more slots

VORW slot_identifier disjunction of expressions

 /* one more patterns based predefined slots and expressions */

SDWWHUQ pattern_identifier unordered list of slots separated by commas

DOORZHG unordered list of constraints sub-sequence slots;

IRUEELGHQ unordered list of constraints sub-sequence slots;

Figure 3: The formal syntax for the
specification language

To deal with this issue, we delimit relevant

metadata located in text by XML tags. At the

extraction pattern level, the tag name is specified by

an identifier of the format TagName[term] or

TagName[expression], where the TagName encloses

the term or expression in the output when entirely

the extraction pattern holds. Roughly speaking, the

notation terms, expressions, slots, and extraction

patterns is implemented as a formal syntax with

similarity to procedural programming languages,

where identifiers of expressions, slots and patterns

are declared and defined within the scope of a

dictionary of extraction patterns. The formal syntax

is illustrated in Figure 3.

4.5. Translate extraction patterns to FST

Finite state techniques [17] are widely used in

various areas of NLP. Regular expressions are the

appropriate level of abstraction for thinking about

finite state languages. Informally, a FST is a device

that recognizes some sequences in the input, and

associates them with some outputs. Sequences are

characters or words in the text written in a natural

language; outputs are some linguistic information.

The specification language is easy to understand

and maintain by end-users, but it is not a

computational device for computers to directly carry

out a real information extraction. The missing part is

to translate the semantic behind the syntax to

executable computational devices. After all, an

extraction pattern is a regular expression and the

language defined by a pattern is a regular language

(Kleene theorem [18] and an equivalent finite state

automaton can be generated that recognizes this

language; Thomson theorem [22].

 - 153 -

<:

]]

<NB> <:

]]

or <NB>

<:

]]

/

<NBL> <:

]]

<:

]]

<:

]]

<NBL>

<NB> <:or <NB>

y

<NB> unit>

[udosage= vdosage

unit>

[udosage= [vdosage=

unit>

[udosage= [vdosage=

<NB>

unit>

[udosage= [vdosage=

half unit>

[udosage= [vdosage=

and half unit>

[udosage= [vdosage=

unit>

dosage medication

duration dosage medication frequency

dosage medication frequency

frequenc

duration

duration

[vdosage=] [udosage=]

Figure 4: Equivalent FST for dosage and the
FST of the extraction pattern

By using an FST, all possible combinations defined

in an extraction pattern can be illustrated; at the

expression level, it is not tricky to find an elementary

FST as a sequence of nodes, where each node

represents a term of the expression. At the slot level,

the slot is presented by a FST of disjunction of paths,

where each path contains a single node representing

an expression of the slot. Thus, the extraction pattern

becomes a very huge as illustrated in the lower part

of the Figure 4 and it is even hard to be generated

using a graphic tool.

5. The wrapper: Xtrator

The Xtractor wrapper applies specific domain

dictionaries and linguistic analyzers to paragraphs

and then employs the FSTs of extraction patterns to

locate relevant data. More details about the Xtractor

architecture is depicted in Figure 5. the Xtractor is

organized into two major components, which are

further broken down into smaller logical sub

components. The major components of Xtractor are:

Linguistic Parser and Pattern Locator. The main role

played by each of the sub-components is described

below.

- Text pre-processing: At the beginning, the

Xtractor reads documents. It checks that the content

conforms to a valid text encoding system (ANSI 256

characters). The main goal of this sub-component

relies on scanning paragraphs to recognize tokens

such as simple forms.

- Text Analysis: After having pre-processed

paragraphs, the text analysis segments each

paragraph into sentences by recognizing boundaries.

Then, it identifies and marks unambiguous words.

This operation corresponds to a look-up the

linguistic dictionaries. Finally, it detects and marks

special tokens, such as elided, contracted words, and

unambiguous abbreviations, etc.

Text preprocessing

Text Analysis

Lexical Analysis

Disambiguation

Vocabulary Text

Documents
paragraphs

dictionaries

Linguistic parser

n

2

1

.

.

.

Locate patterns

tuples

tuples

tuples

Extraction patterns

Pattern locator

Figure 5 : The Xtractor Architecture

- Lexical Analysis: After the completion of the

text analysis, a set of dictionaries is applied. As

building dictionaries from draft is a tedious task, we

adopt LADL [16] dictionaries format, we exploit

dictionaries in the format of DELAF for simple

forms and of DELACF for compound forms. As a

result of lexical analysis, all words in paragraphs are

accessible in various ways.

- Disambiguation: Applying resources to

paragraphs may introduce ambiguity. Ambiguous

words are words that correspond to more than one

entry in the dictionaries. We limit our

disambiguation sub-component to apply dictionaries,

which contain all deviant unambiguous compound

words.

The application of all sub-components results in a

text vocabulary indexed by dictionaries. In the last

step, the Pattern Locator is invoked with text

vocabulary in argument.

5.2. Pattern Locator

The core of Xtractor is the Pattern Locator

component. This component reads a text vocabulary

of a particular paragraph delivered by the linguistic

parser, and loads its appropriate extraction pattern.

The Pattern Locator translates the syntax of the

extraction pattern to an equivalent FST. Thus, the

FST is applied to recognize matching sequences and

marked up relevant features with open and close

delimiters.

 - 154 -

6. Implementation

A primary release of the Xtractor is implemented;

a compiler is developed using JavaCC to recognize

the formal syntax of the specification language. The

compiler also implements the conversion algorithm

of Thomson [22] to generate the appropriate FST for

each extraction pattern. In the prototype, we inherit

from Unitex [19] its capabilities to build Finite State

descriptions to implement the Linguistic Parser. The

Pattern Locator is built around the OraMatcher

package [20] to extract the matched data after

applying the FSTs of extraction patterns. We

adopted ADL dictionaries format to describe our

working language and get advantage of available

dictionaries.

7. Conclusion and future work

In this paper, we presented an approach and

architecture to design a wrapper, called Xtractor, for

a family of XML Paragraph-Centric Documents. The

Xtractor is based on linguistic parsing to mark up

words in paragraphs against meta-words in

electronic dictionaries. We defined a high-level

specification language based on regular expressions

to write extraction patterns. Coupling paragraphs

parsing and writing expressiveness extraction

patterns provide a convivial tool for casual users to

customize the extraction of semi-structured data.

At the present, we are applying Xtractor to corpus

of French language. To describe our specific domain

of application, we built small dictionaries. The initial

experiment results show satisfactory performance.

We are currently building a corpus of prescriptions

and stating respectively precision and call ratio in

order to compare our work to the state of the art.

Furthermore, we are working on the automatic

induction of extraction patterns, which is mixing the

linguistic approach and finite state transducers with

some prior learning algorithms.

8. References
[1] Crescenzi V., Mecca G. and Merialdo P. RoadRunner:

Towards Automatic Data Extraction from Large Web

Sites, 27th International Conference on Very Large

Databases (VLDB 2001)

[2] Muslea I. Extraction patterns for information extraction

tasks: A survey. In AAAI-99 Workshop on machine

learning for information extraction, 1999.

[3] Douglas A., Hobbs J., Bear J., Israel D., and Tyson M.

FASTUS: A Finite-State Processor for Information

Extraction from Real-World Text, Proceedings. IJCAI-93,

Chambery, France, August 1993.

[4] Poibeau T. A corpus-based approach to Information

Extraction, In Journal of Applied System Studies, vol. 2

n°2, 2000.

[5] Bressan, S. and Bonnet Ph. : Extraction and Integration

of Data from Semi-structured Documents into Business

Applications Conference on the Industrial Applications of

Prolog 1997.

[6] Kushmerick N. Wrapper Induction for Information

Extraction, PhD Dissertation, University of Washington,

1997.

[7] Kushmerick, N. Finite-state approaches to Web

information extraction. In Proc. 3rd Summer Convention

on Information Extraction, Rome 2002.

[15] Karttunen L., Chanod J-P., Grefenstette G. and

Schiller A. Regular Expressions for language Engineering.

Journal of Natural Language Engineering vol 2 no 4

(1997) pp 307-330, 1997 Cambridge University Press

ISSN:1351-3249

[10] Piskorski J. and Neumann G. An Intelligent Text

Extraction and Navigation System In proceedings of 6th

International Conference on Computer-Assisted

Information Retrieval (RIAO-2000), Paris, 2000

[8] Hsu C-N. Initial results on wrapping semistructured

web pages with finite-state transducers and contextual

rules. In Proceedings of AAAI-98 Workshop on AI and

Information Integration, Technical Report WS-98-01,

Menlo Park, CA, 1998. AAAI Press.

[9] Liu L., Pu C. and Han W.XWrap: An XML-enabled

Wrapper Construction System for Web Information

Sources, Proceedings of the Sixteenth International

Conference on Data Engineering March, 2000, San Diego,

CA (IEEE CS Press).

[11] Kuhlins S. and Tredwell R. Toolkits for Generating

Wrappers: A survey, In Net.ObjectDays, Erfurt, Germany,

September 2002.

[12] Smith D.J. and Lopez M. (1997): Information

extraction for semi-structured documents, Proc. Workshop

on Management of Semi-structured Data, May 1997

[13] Eilenberg S. “Automata, Languages and Machines”.

New York: Academic Press [online]. 1974, vol A. ISBN

0122340019.

[14] Hsu C-N. and Dung M.T. Generating finite-state

transducers for semistructured data extraction from the

web. Information Systems, 23(8):521-538, Special Issue

on Semistructured Data, 1998.

[16] Gross M. “The Use of Finite Automata in the Lexical

Representation of Natural Language”. In Electronic

Dictionaries and Automata in Computational Linguistics.

Berlin: Springer-Verlag, 1989, vol 377, p.34-50.

[17] Karttunen L., Koskenniemi K. and Noord G. “Finite

State Methods in Natural Language Processing”. Natural

Language Engineering. 2003, vol 9, n°1. p.1-3.

[18] Martin C. “Introduction to languages and the theory

of computation”. 2nd edition. New York: The McGraw-

Hill Companies, 1997, 450 p. ISBN 0070408459

[20] Original Reusable Objects. “OROMatcher 1.0 User's

Guide”[online].http://www.savarese.org/oro/docs/OROMatcher/

(last visited 11/10/2003)

[19] Unitex Unitex Home page [online] http://www-

igm.univ-mlv.fr/~unitex/index (last visited 26/8/2004)

[21] Ashish N. and Knoblock C. (1997). Wrapper

Generation for Semi-structured Internet Sources. ACM

SIGMOD Workshop on Management of Semi-structured

Data, 1997, Tucson , Arizona

[22] Hopcroft E.J. and Ullman D.J. “Introduction to

automata theory languages, and computation”. 1st edition.

USA: Pearson Education POD, 1979, 418 p.

 - 155 -

