
Ontology-Based User Requirement Analysis for Banking

Application

Ruey-Shun Chen, Chan-Chine Chang, Chia-Chen Chen and Isabel Chi

Institute of Information Management, National Chiao Tung University, Taiwan

rschen@iim.nctu.edu.tw

Abstract

Leaning toward user requirements and constructing a

standard method to build up a high-quality application in

limited developing time, and enhancing the model

flexibility for user to change their requirements in time

are main objectives of this research. In this study, we

created ontology to represent user domain in a deposit

system, including operation procedure, entity, interaction

and action from deposit business process with classes and

relationships in tree maps. It classifies and reorganizes

these domains by using the ontology technology. Though

ontology is created from user requirements, the results

show it can construct a user-driven software for

defending frequent requirement changes.

1. Introduction

When developing a new software application, user

requirements are listed in a written statement by an

experienced domain expert or old-timely system analyst.

Each expert or analyst describes user requirements and

system figuration in different templates and document

patterns. It is difficult for a new person to comprehend

the user requirements in a short time. Usually we describe

the user requirements by focusing on the core of the user

needs, such as specific process patterns or some

important business rules. If we are not familiar with this

domain knowledge, it is impossible to collect the user

requirements. For an application developing company, it

is not practical or workable to focus on one business

domain all the time. We have to find a way to standardize

our developing process in a formularized form and

through the developing process extracting knowledge

from user requirements in this domain. The purpose is

taking the least time to know what a user needs are and

to help system analyst to realize user requirements deeply.

The deposit system is one of the banking applications

from past developing experience. We review how an

application links a knowledge-extraction method with

ontology to achieve continuous system developing

knowledge support and guide an analyst to develop a new

application with standard templates. It provides this

knowledge in a machine-readable format that will be

maintained in a requirement analysis knowledge base

[11]. The process from knowledge extraction is further

enhanced using a standard template that provides

extended software engineering technology and ontology

terminology.

2. Literature Review

2.1 Ontology
Ontology is a system of categories for classifying and

talking about the things that are assumed to exist.

Ontology conceptualizes a domain into a machine-

readable format. We use the term ontology to denote a

specification of a conceptualization. That is, a ontology is

a description (like a formal specification of a program) of

the concepts and relationships that can exist for an agent

or a community of agents. This definition is consistent

with the usage of ontology as set-of-concept definitions.

We have been designing ontology for the purpose of

enabling domain knowledge sharing and reuse with user.

The subject of ontology is the study of the categories

of things that exist or may exist in some domain. An

informal ontology may be specified by a catalog of types

that are either undefined or defined only by statements in

a natural language. A formal ontology is specified by a

collection of names for concept and relation types

organized in a partial ordering by the type-subtype

relation [1].

For banking software, deposit system, we created a

ontology to represent user domain, including operation

procedure, entity, interaction and action, from deposit

business process with classes and relationships in tree

maps. We classify and reorganize them using the

ontology as an implementation guide. We try to find a

way to get closer to users, and let users realize what we

have designed for them earlier. Though ontology is

created from user requirements, we hope to construct a

2-9525435-0 © IEEE SITIS 2005 - 224 -- 224 -- 223 - - 223 - - 223 -0000000000- 223 - - 223 - - 224 - - 225 - - 225 - - 226 - - 227 - - 228 - - 228 - - 228 - - 228 - - 228 - - 228 - - 228 - - 228 - - 234 - - 234 -

user-driven software for defending frequent requirement

changes.

2.2 Application analysis
Because software, like banking software or application,

is embodied knowledge, and because that knowledge is

initially dispersed, tacit, latent and incomplete in large

measure, application development is a social learning

process. The process is a dialogue in which the

knowledge that must become the software is brought

together and embodied in the software. The process

provides interactions between users and designers,

between users and evolving tools, and between designers

and evolving technology. It is an iterative process in

which the evolving tool itself serves as the medium for

communication, with each new round of the dialogue

eliciting more useful knowledge from the user involved.

Three different viewpoints, as shown in Figure 1, are

used frequently when planning about work systems that

use IT extensively [6].

Figure 1. Three viewpoints for thinking about a system in an

organization

To solve actual problems in a bank or in an

organization, an application engineer or a team of

engineer must incorporate a development strategy. The

strategy is often referred to as a process model or a

software engineering paradigm. A process model for

software engineering is chosen based on the nature of the

application, the methods and tools to be used, and the

controls and deliverables that are required. In this study,

we use the linear sequential model as basis for a

development of the application process. The linear

sequential model sometimes called the waterfall model

suggests a systematic, sequential approach to software

development that begins at the system level and

progresses through analysis, design, coding, testing, and

support[5].

2.3 Banking case study

Many information systems in bank are very critical to

support bank daily operations. Most of them exist in the

system that data entry from a transaction processing. A

transaction processing system collects and stores data

about transactions and sometimes controls decisions

made as part of a transaction. A transaction is a business

event that generates or modifies data stored in an

information system. They are used widely in bank,

including writing a check, use a credit card, or pay a bill

sent by a bank [2]. This kind of information system are

designed based on detailed specifications for how the

transaction should be performed and how to control the

collection of specific data in specific data formats and in

accordance with rules, policies, and goals of the

organization. A well-designed process transaction system

can minimize data entry errors by automatically filling in

data such as customer name or unit price once the user

has entered the customer id or product number. Data

entry is very important for users to input transaction data.

It is an efficient way for input process and to keep data

consistent with other data in the database.

Most of software systems or applications in bank are

transaction type systems. We choose a deposit system as

an example. There are three major modules including

Basic module, Process module, Report module, and 17

sub-modules and 43 user interfaces.

Figure 2. Deposit system function relational diagram

3. Knowledge extraction method

What knowledge exists in software requirement

analysis for the process of application development?

Software requirements engineering is a process of

discovery, refinement, modeling, and specification.

Models of the required data, information and control

flow, business process, and operational behavior are

created. We are pushed to design some classes to support

the same type of application, transaction processing type

system, from banking software. One of important reasons

and benefits is reuse. For example, the analysis of

- 225 -- 225 -- 224 - - 224 - - 224 -0000000000- 224 - - 224 - - 225 - - 226 - - 226 - - 227 - - 228 - - 229 - - 229 - - 229 - - 229 - - 229 - - 229 - - 229 - - 229 - - 235 - - 235 -

requirements for a new application indicates that 100

classes are needed. Two teams are assigned to build the

application. Each will design and construct a final

product. Team A does not have access to a class library,

and therefore, it must develop all 100 classes from

scratch. Team B uses a robust class library and fins that

55 classes already exist. The result is that team B will

finish the project much sooner than team A and the cost

of team B product will be lower than the cost of team

A product. Moreover, team B deliveries a fewer defect

product than team A. Where did the robust class library

come from? To answer the questions, the organization

that created and maintained the library has to apply

domain and requirement analysis [8]. In other words, the

ideas to design a common class library are from the

knowledge base of user requirement and business

domain.

Requirements analysis is an application development

task that bridges the gap between system level

requirements engineering and software design. These

activities result in the specification of application

operational characteristics, data, function and behavior,

indicate application interface with other system elements,

and establish constraints that software must meet.

Requirements analysis provides the software designer

with a representation of information, function, and

behavior that can be translated to data, architectural,

interface, and component-level class designs [7].

To realize the operational concepts and their relation to

automated capabilities is an important thing. Only from

these processes, we can know what the users really want

and get an accurate pattern for integrated information

blueprint. We assume DOD architecture framework

defines a common approach for Department of Defense

architecture description development, presentation, and

integration. The framework is intended to ensure that

architecture descriptions can be compared and related to

organizational boundaries, including joints and

multinational boundaries.

The Framework defines three related views of

architecture: operational (OV), systems (SV), and

technical standards (TV) as Figure 3[3, 4]. Each view is

composed of sets of architecture information that are

depicted via graphic, tabular, or textual products. The

All-DoD Core Architecture Data Model (CADM) defines

the data structure and relationship for architecture

information. The purpose of the DoD Architecture

Framework is to provide guidance for describing

architectures. The Framework provides the rules,

guidance, and product descriptions for developing and

presenting architecture descriptions that ensure a common

denominator for understanding, comparing, and

integrating architectures.

Figure 3. Linkages among views.

In the framework, there are three major

perspectives(view), that logically combine to describe an

integrated architecture. These include the operational

view(OV), system view(SV), and technical standards

view(TV). Each of the views depicts certain architecture

attributes. The OV is a description of the tasks and

activities, operational elements, and information

exchanges required to accomplish DoD missions. The SV

is a description, including graphics of systems and

interconnections providing or supporting DoD functions.

For the individual system, the SV includes the physical

connection, location, and identification of key hardware

and software. The SV associates resources to the OV and

its requirements per standards defined in the TV. The TV

is the minimal set of rules governing the arrangement,

interaction, and interdependence of system parts or

elements whose purpose is to ensure that a conformant

system satisfies a specified set of requirements.

Figure 4. An example of knowledge extraction

To extract relationships from user requirements

between a pair of entities, we need domain-specific

knowledge, which we can infer from the ontology and

use to determine required and expected relations between

the entities. Figure 4 [1] shows the extraction process

from the application target “Establish a information

system to support deposit process in bank starting from

customer request a trade to finish assignment and

produce daily account.” By the application developing

process direct access to the ontology concepts and

relations.

- 226 -- 226 -- 225 - - 225 - - 225 -0000000000- 225 - - 225 - - 226 - - 227 - - 227 - - 228 - - 229 - - 230 - - 230 - - 230 - - 230 - - 230 - - 230 - - 230 - - 230 - - 236 - - 236 -

4. Knowledge extraction

4.1 Domain knowledge
To provide some of the guidance missing from the

general process, following the principle-based system

analysis method and DOD_AF [3, 4] principle, a practical

approach business professionals can use from analyzing

requirements. The method can be used in a number of

ways. First, to help organize the analysis when business

professionals and domain experts must build their own

small physical model for the application or information

system using exposed and accumulated domain

knowledge. Second, it is a way to create an initial

understanding of a situation and even a tentative

recommendation before starting a collaboration whit IT

professionals. Third, it is a way to make sure that an

ongoing collaboration between business and IT

professionals balances business issues and computer

system details. Fourth, it is a way domain and IT

professionals can make sure that the process model

coming out from their experience and user requirements

is workable and that they have an adequate understanding

of the business situation.

Detailed user requirement, operation scenario, system

aspect, technical platform included, will be prepared after

physical domain description and process algorithm

constructing in user requirement statement document.

Base on the requirement statement, we continue the next

step for system analysis.

4.2. Pattern analysis
To extract the knowledge from detailed user

requirement statement, we have to use predefined

analysis pattern to reduce system variations among

relations defined in the ontology. These include entity,

function, process or algorithm, and interface.

At first, we mark the noun and verb in every sentence

in a requirement statement. It analyzes each paragraph

syntactically and semantically to identify relevant

knowledge [13, 15]. The Apple Pie Parser groups phrase

that the syntactical analysis determines to be

grammatically related. Using semantic analysis, the tool

then locates a sentence main components, subject, verb,

object, and so on, and identifies names entities using

some tools, like GATE and WordNet. This application

does not use any tool to aid semantic analysis in the

requirement statement. We just mark and analyze each

sentence in the requirement statement. And then we

assemble these verbs in the statement, and map them to

the process algorithm; we draw a map tree to present their

relationships and procedures in Figure 5.

In Figure 5, we focus on the branch P1 Basic Module

and M1 Customer Sub-Module. Each node on this branch

was composed by a noun and a verb and its parent is

presented by a service. For example, in a requirement

statement, one list is “Create a customer profile and

maintain it.” The “customer” is a noun meaning a person.

The extracted synonyms for the verb sense include

“create” and “maintain”. The word “maintain” means to

maintain customer profiles and records including delete,

update and query. The four actions, create, delete, update,

query construct one service –S1 Customer Data prepared

by the system. The noun “customer” also means a entity

and the verbs “create” and “maintain” mean the function

that will be provided in a deposit system. We give the

entity, customer, a ID number E1 and also give an ID for

each function: create (F1), delete (F2), update (F3), and

query (F4).

Figure 5. Analysis for deposit system – operation process

tree

Let us show the details about Entity (E1-Customer) of

function F1 (Customer Create) in Figure 6. Each entity

provides a lot of functions for the specific application.

We describe it with the function tree. For example, entity

customer provides 12 functions for a deposit system. The

function tree presents the relationships between processes

and functions with these different trees. When we talk

about the business process, please check the process tree.

Each branch presents the business process. This

application will support to write in requirement

statements and each node presents the activities around

the domain entity. These activities are supported in the

application by entity functions. One of important

concepts is that each point behind one branch means a

decision point in a domain. Which branch system will be

provided for users in the right time? One decision point

means a system configuration parameter decides the

system dynamic flow rule. In Figure 5, service S1, S2 and

S3 provide customer basic data maintenance, customer

contact list maintenance and customer account

maintenance. In the process tree show S2 Contact List

and S3 Customer Account will be triggered by a user

login to the interface U2 or U3 when one user logins to

the interface Customer Base Data . These branches,

nodes, and decision points construct the application and

represent the behavior in a machine-readable format.

- 227 -- 227 -- 226 - - 226 - - 226 -0000000000- 226 - - 226 - - 227 - - 228 - - 228 - - 229 - - 230 - - 231 - - 231 - - 231 - - 231 - - 231 - - 231 - - 231 - - 231 - - 237 - - 237 -

Figure 6. Analysis for deposit system – function tree

Figure 6 shows all of functions are defined by process

tress. Each function is decomposed into 3 parts Input,

Process, and Output, and will be edited by a program.

Just like function specification, it is essential to describe

the input parameter, process condition and the function

output. For example, the function F1 Create defined by

entity (E1 Customer), shows in Figure 7, we know some

attributes customer ID, customer type, customer license,

customer register no, customer tax no, customer name are

input parameters. We give these input parameters some

fixed variable numbers I1, I2, I3, I4, I5, I6, after users

input data in these parameters, assign them into another

variable A*(A1-A6), prepared insert into the table

mapping to entity customer. These functions are defined

by a function tree and will be performed through a user

interface.

Figure 7. Analysis for deposit system – entity form

Figure 7 and Figure 8 present the detailed description

about entity Customer. Figure 7 shows the data model of

entity customer that consists of three interrelated pieces

of information: the entity (data object), the attributes that

describe the data object, and the relationships between

these attributes and the function list provided by this

entity. Figure 8 shows the relationships that connect data

objects to one another [5]. In the system specification, we

have to describe defined data elements, data type, and

their relationships [9]. To define these data elements, we

follow the entity type and relationship in business

domain.

Figure 8. Analysis for deposit system–entity relational

diagram

4.3. Pattern design
Design has been described as a multi-step process in

which representations of data and program structure,

interface characteristics, and procedural detail are

synthesized from user requirements analysis in

ontological formulation present. Design is information

driven. Software and application design methods are

derived from consideration of each of the three domains

of the analysis model. The data, functional, and

behavioral domains serve as a guide for the creation of

the software design. We start from the architectural

design that is the preliminary blueprint from which

application is constructed. The deposit system performs

in the IT architecture as Figure 9.

Figure 9. Deposit system architecture.

- 228 -- 228 -- 227 - - 227 - - 227 -0000000000- 227 - - 227 - - 228 - - 229 - - 229 - - 230 - - 231 - - 232 - - 232 - - 232 - - 232 - - 232 - - 232 - - 232 - - 232 - - 238 - - 238 -

5. Conclusions

Today leading businesses are increasingly aware that

the knowledge of their employee is one of their primary

assets. In an application developing company that relies

heavily on unique competencies and methods, knowledge

has more competitive significance than physical assets

because the physical assets can be replaced or replenished

more easily. The companies with the best results to date

stitch technologies together into a system that operates

effectively and that is genuinely supported by the culture

and application development. Learning from the user

requirement and constructing our method to build up a

high-quality application in limited developing period with

the flexibility for users to change their requirements in a

time.

For a deposit application developing in banking

software, developing in an initial experiment, running

deposit application to search and extract information from

our customer, we set up the knowledge extraction way to

select applications from the past system. These

developing documents include system requirement

statement, system design specification, and running

program. In this study, analysis deposit application

requirement includes 42 functions. The extraction process

identified one type method for transaction process type

system developing, but it is most application in general

business. Four patterns, operation tree, function tree,

entity form and entity relationship diagram are for

software analysts to present their system figuration and

three patterns are for system designers to present the

system in machine-readable type, included program

structure, common objects and table lists.

References

[1] Harith Alani, Sanghee Kim, David E.Millard, Mark

J.Weal, Wendy Hall, Paul H.Lewis and Nigel

R.Shadbolt, “Automatic ontology-based knowledge

extraction from web documents”, IEEE Intelligent

Systems vol.18 (1), 2003, pp.14-21.

[2] “BASE REPAIR SOP—Level5”, Military of army,

2000

[3] “DoD Architecture Framework—Volumn I:

Definitions and Guidelines”, Department of defines,

2003

[4] “DoD Architecture Framework—Volumn II:

Product Description”, Department of defines, 2003

[5] Roger s. Pressman, Software Engineering – A

Practitioner Approach, McGraw-Hill Higher

Education, 2001

[6] Steven Alter, Information System – The Foundation

of E-Business, Prentice Hall, 2002.

[7] S. Handschuh, S. Staab, and F. Ciravegna,

“SCREAM Semi-Automatic Creation of Metadata,

Knowledge Engineering and Knowledge

Management: Ontologies and the Semantic Web”, ,

Lecture Notes in Artificial Intelligence, no. 2473,

Springer-Verlag, 2002, pp.358–372.

[8] M. Vargas-Vera et al., “Knowledge Extraction

Using an Ontology-Based Annotation Tool”,

Workshop on Knowledge Markup & Semantic

Annotation, ACM Press, 2001, pp. 5–12.

[9] L. Rutledge et al., “Generating Presentation

Constraints from Rhetorical Structure”, Proc. 11th

ACM Conf. Hypertext and Hypermedia, ACM Press,

2000, pp.19–28.

[11] R. Yangarber and R. Grishman, “Machine Learning

of Extraction Patterns from Unannotated Corpora:

Position Statement”, Workshop on Machine

Learning for Information Extraction, 14th Eur.

Conf. Artificial Intelligence, IOS Press, 2000, pp.

76–83.

[12] S. Kim et al., “Artequakt: Generating Tailored

Biographies with Automatically Annotated

Fragments from the Web”, Workshop Semantic

Authoring, Annotation & Knowledge Markup, 15th

Eur. Conf. Artificial Intelligence, IOS Press, 2002,

pp. 1–6.

[13] H. Alani et al., “Managing Reference: Ensuring

Referential Integrity of Ontologies for the Semantic

Web”, Lecture Notes in Artificial Intelligence, no.

2473, Springer-Verlag, 2002, pp. 317–334.

[14] D.T. Michaelides et al., “Auld Leaky: A Contextual

Open Hypermedia Link Server”, Lecture Notes in

Computer Science, no. 2266, Springer-Verlag,

2001, pp. 59–70.

[15] S. Staab, A. Maedche, and S. Handschuh, “An

Annotation Framework for the Semantic Web”,

 Workshop MultiMedia Annotation ,

2001.

- 229 -- 229 -- 228 - - 228 - - 228 -0000000000- 228 - - 228 - - 229 - - 230 - - 230 - - 231 - - 232 - - 233 - - 233 - - 233 - - 233 - - 233 - - 233 - - 233 - - 233 - - 239 - - 239 -

