
Ad Hoc Location Service for Mobile Agents

Ibrahim Lokpo, Tra Goore Bi
Institut National Polytechnique Félix Houphouet-Boigny, BP 1093 Yamoussoukro, Côte d’Ivoire

Email: lokpo@hotmail.com, tgoore@caramail.com

Gérard Padiou
Institut de Recherche en Informatique de Toulouse

ENSEEIHT, BP 7122, 2 rue Charles Camichel, F-31071 Toulouse cedex 7
Email: padiou@enseeiht.fr

Abstract

In this paper, we study two implementations of a mobile
agent location service in the context of an underlying ad
hoc network. More precisely, this service aims at solving
the problem of routing an agent toward a target agent in
order to cooperate on a common host. Both the migration
number and the tracking time must be minimized by such a
service. We compare two implementations based on rumor
propagation using either a piggybacking approach or a gos-
sipy agent-based approach. The comparison of the two im-
plementations is based on simulation results. Performance
analysis demonstrates that the piggybacking approach min-
imizes the response time and the gossipy agent-based ap-
proach minimizes the network overhead.

1. Introduction

Mobile agents have received a great interest for dis-
tributed applications [8, 12] because of their flexibility and
capacity of adaptation to very different scenarios. In partic-
ular, mobile agents can migrate from machine to machine
in a partially disconnected network. A lot of mobile agent
platforms [15, 7] have been implemented but they are often
experimented in the context of static networks and with few
applicative agents.

The mobility of agents can improve the performance of
distributed applications. In such applications, when a mo-
bile agent needs a service of an other agent, it moves to the
site of the desired service. All interactions becomes local.
There is no need of remote procedure call. Thus, the over-
head of the network due to such calls are avoided. However,
an agent migration cost appears.

Mobile agents are considered as well-adapted to dy-
namic communication environments such as ad hoc net-

works thanks to the following interesting properties:

• Communication property: agents do not require per-
manent connections between nodes: a link must only
be available during the migration steps of an agent.

• Fault tolerance property: The loss of an agent can be
recovered by using a set of agents. If an agent is lost
or locked on its current(disconnected) node, others can
continue their task. As long as at least one agent sur-
vives, the algorithm still works, albeit with diminished
performance.

• Adaptation property: The number of agents can be ad-
justed according to the applicative load.

In this work, we study a location service for mobile
agents in the context of underlying ad hoc networks. In such
networks, arbitrary mobile hosts can be recruited to ”fill the
gap” by serving as intermediate routers between two hosts
that may otherwise not be in direct transmission range of
one another. More precisely, this service aims at solving
the problem of routing an agent toward a target agent in or-
der to cooperate on a common host. Awerbuch and Peleg
[1] stated an analogous problem of keeping track of mobile
users in a distributed network. Here, users are mobile agents
and the goal is different : the requesting agent itself must be
routed from its current host to a host where both agents will
be eventually co-located.

For the tracker agent, the number of migrations and the
time of the routing process must be minimized. We solve
this problem in the case where there is possibly never a con-
nected path from the initial tracker agent host to the final
meeting host of the two agents or when a network partition
exists at the time an agent performs a request to find a tar-
get agent. Agent tracking is based upon rumor propagation
to route a requesting agent to the target agent host without
assuming an underlying location service for nodes.

2-9525435-0 © IEEE SITIS 2005 - 148 -- 148 -- 147 -            - 147 -            - 147 -0000000000- 147 -                               - 147 -                               - 148 -                               - 149 -                               - 149 -                               - 150 -                               - 150 -                               - 150 -                               - 150 -                               - 150 -                               - 150 -                               - 150 -                               - 150 -                               - 150 -                               - 150 -                                                              - 156 -                               - 156 -



2. A location service for mobile agents

A location service for mobile agents aims at solving the
problem of how to minimize the number of migrations a
mobile agent has to perform before reaching a target agent
in order to cooperate on a common host. It requires to im-
plement a strategy of adaptative migration. Such a strategy
is a mean to route a mobile agent while migrating.

We assume that network mobility is random and agent
migration is pro-active. Agents start with no knowledge of
either the total number of other agents or the number and
the interconnection of active network nodes. In other words,
nodes are anonymous. We only assume that each applicative
agent has a knowledge of the identity of its target agents.

With these weak assumptions, the agent location ser-
vice cannot be guaranteed with strong fairness properties.
Some migration schemes of agents, some race conditions or
dynamic network reconfigurations could prevent some re-
questing agent to reach its target. However, such situations
require very specific timing assumptions about the global
mobility of agents or nodes. We assume such cases to occur
with a very low probability.

2.1. Agent location versus message routing

Agent location exhibits both some similarities and im-
portant differences with message routing[2]:

• when an applicative agent requests to meet an other
agent on a distant node, it must move toward the re-
quested agent’s host. With messages, the message is
routed to the receiver and both the sender and the re-
ceiver remain free to move anywhere.

• a path from the requesting agent to the target agent
must be built in a dynamic way with a very low level
of reuse. With messages, routing aims at setting up a
path between the sender and the receiver and this path
may be reused for a flow of messages.

Several schemes have been proposed for message rout-
ing between mobile agents[16]: central server, broadcast
and forwarding pointers. These schemes are suitable in mo-
bile agent platforms using a reliable static network but, their
basic principles become unappropriate with dynamic net-
works. The solution of a central server[10, 7] consists in
maintaining a connection with a given node. This solution is
not appropriate when connections are dynamic. Broadcast
consists in flooding many messages through the network. It
is not a suitable solution for networks with a low ressource
capability. The forwarding pointer approach[5] consists in
having on each node visited by an agent, a pointer to the
next node where this agent will migrate. This approach is
well suited for dynamic networks and is a basic mechanism

used to route messages between agents. Therefore, we reuse
this notion with, nevertheless, specific update rules.

2.2. Location service specification

The location service is based on a partitioned directory
of agents. Each node of the network contains a local di-
rectory which only records agents currently located on the
node. All consultations and updates of the decentralized di-
rectory are local. They do not need remote communication.
Therefore, they do not generate any network overhead.

Tracking agent behaviour When an agent arrives at a
site, it records its identity in the local directory and looks for
the agent it wants to cooperate with. If the target agent is not
found in this local directory, then the requesting agent calls
a so-called toward primitive to obtain a migration destina-
tion. This primitive either returns an actual neighbor and
the requesting agent attempts to migrate toward this direc-
tion or is returns null and, by default, a random migration
occurs. The following code expresses such a behaviour :

Agent target = lookup(target agent name);
if (target == null) {

Node dest = toward(target agent name);
if (dest ! = null) move(dest);
else move(); /* random migration */

}
We refine this generic behaviour according to two strate-

gies:

• a blocking strategy in which the toward primitive al-
ways returns an actual destination neighbor. In this
case, this primitive can delay the calling agent until
such a neighbor is known;

• a non-blocking strategy in which the primitive imme-
diatly returns an actual destination neighbor or null if
no neighbor is available.

Application interface The service exports two primi-
tives:

• Agent lookup(String target): this primitive allows to
check if a target agent is currently located on the re-
questing agent’s host. When the primitive fails, it re-
turns a null reference.

• Node toward(String target): this primitive allows to
determine a neighbor node toward which the request-
ing agent must migrate in order to meet the requested
agent. According to the service implementation, this
primitive can either delay the requesting agent until a
neighbor is found (blocking strategy) or return a neigh-
bor or null value immediately (non-blocking strategy).

- 149 -- 149 -- 148 -            - 148 -            - 148 -0000000000- 148 -                               - 148 -                               - 149 -                               - 150 -                               - 150 -                               - 151 -                               - 151 -                               - 151 -                               - 151 -                               - 151 -                               - 151 -                               - 151 -                               - 151 -                               - 151 -                               - 151 -                                                              - 157 -                               - 157 -



Location relationships Agent location can be deduced
from two kinds of relationship among agents distributed
over the network:

• a visit relationship S A
↪→ S in which S is the domain

of site names and A is the domain of agent names. An
occurrence s

a
↪→ s′ defines the neighbor site s′ which

the agent a has moved to when it has left the site s for
the last time. A visit relation can be interpreted as a
forwarding pointer[5].

• a neighborhood relationship S �A�←↩ S in which �A� is
the power set of the set A. For a site s, the relation

s
a1,a2,...←↩ s′ means: {a1, a2, ...} is the set of agents

assumed by the site s to be located on the neighbor s′.

Neighborhood relations can be captured between neigh-
bor nodes. However, we are interested in propagating these
last relations as rumors among nodes to obtain node paths
between two agents where ever they are located. For in-
stance, if the following relations are known1:

s1{t} a,b,c,d←↩ s2{a, b} ∧ s2
c,d←↩ s3{c, d}

the tracker agent t searching for the agent c, can be routed
toward its target along the path {s1; s2; s3}. To achieve this
goal, we adopt an epidemic approach[4] to propagate such
rumors. The gossip-based handling of the neighborhood re-
lationship is the main feature of our proposal.

In an ideal world, each node should know which one of
its neighbors must be chosen to find the host of any existing
distant agent along the shortest path. Such a state cannot
exist during an execution in so far as the mobility of sites
and agents quickly makes out of date propagated gossips.

3. Service implementation

The implementation of the service aims at providing the
most accurate and global knowledge of the preceding re-
lationships to each site. To achieve this goal, each host
records a set of hints. A hint <A, n> about an agent A
provides the neighbor node n for routing a requesting agent
located on the current host a hop away toward its final target
agent.

Hints are used to record both relations: a visit relation
s

a
↪→ s′ is recorded on the node s by a hint <a, s′> and a

neighborhood relation s
a,b,c←↩ s′ is recorded by a set of hints

{<a, s′>,<b, s′>,<c, s′>}.
In such a dynamic system, a hint can quickly become out

of date. Therefore, a key problem is the validity of hints and
a critical issue is the strategy of their updates.

1Notation: s{x, y, . . .} means the agents {x, y, . . .} are actually lo-
cated on the node s

Applicative agents (direct cooperation)

gossip agents (random migration)
(indirect cooperation)

Ad hoc network

Mobility services

Figure 1. Gossip-based architecture

Classical approaches for message routing use distributed
datation mechanisms based upon timestamps[11] or mo-
bility counters[14]. We choose an other approach: since
hints have a very low level of reuse, a hint is automatically
deleted as soon as an applicative agent has used it. There-
fore, we avoid datation handling.

We experiment two different approaches based upon the
common principle of rumor propagation used for instance
for replicated database maintenance [4] and message rout-
ing in ad hoc networks [13].

In the first case, we adopt a hierachical gossip-based ap-
proach [3] described in the figure 1:

• a low level contains so-called gossipy agents which
move randomly. They perform the rumor propagation
about the current hosts of applicative agents.

• an upper level contains applicative agents that can co-
operate when they are located on the same host. They
use the location service provided by the underlying
level. If no hint exists on the current host, the request-
ing agent is blocked and maintains its outstanding re-
quest until a hint becomes available.

By using mobile agents randomly traveling a randomly
evolving network, rumors can be propagated through the
global system. Such random walks have been proposed
as a primary algorithmic principle in protocols addressing
searching and topology maintenance of unstructured peer-
to-peer networks [9], in group communication protocols in
ad-hoc networks[6] and routing in wireless networks[2].

In the second case, we adopt a piggybacking approach:
during their migration, applicative agents piggyback gos-
sips about agent location on the visited hosts and perform
hint updates. However, in such a case, the location service
is partial in so far as agents migrate at random if no hint
exists on a host.

In both cases, the visit relationship is handled by applica-
tive agents: when such an agent leaves a node, it creates a

- 150 -- 150 -- 149 -            - 149 -            - 149 -0000000000- 149 -                               - 149 -                               - 150 -                               - 151 -                               - 151 -                               - 152 -                               - 152 -                               - 152 -                               - 152 -                               - 152 -                               - 152 -                               - 152 -                               - 152 -                               - 152 -                               - 152 -                                                              - 158 -                               - 158 -



hint containing its identity on its departure node. Such hints
can be interpreted as forwarding pointers [5] and can re-
place hints generated by gossips.

3.1. Gossipy agent-based implementation

This implentation can be stated as follow: a fixed set of
gossipy agents performs the rumor propagation about the
current hosts of applicative agents. However, the rumor
propagation is not based on a flooding approach with a gos-
siping probability[13]. In our case, the gossipy agents move
randomly and try to build paths between applicative agents
located on different nodes. They propagate rumors about
the current locations of applicative agents. These gossips
are used to update the hints recorded on each host.

Hint structure In this implementation, hints have the fol-
lowing structure < A, n, s, d > where:

• A identifies the target applicative agent, used as a key
to find a hint about this agent ;

• n provides the neighbor node to route a requesting
agent toward A and is obtained thanks to gossip prop-
agation and/or forwarding pointers;

• s specifies which node is the source of the gossip from
which the hint is generated. Consequently, this is also
the node where the agent A should be located ;

• d evaluates the number of propagation hops of the gos-
sip which has generated this hint.

Gossip list definition A gossipy agent migrates at random
and handles a gossip list. Such a list gl = {gli}i≥1 contains
items gli =< Ai, si, di > where Ai identifies the applica-
tive agent, si is the source of the gossip and di the number
of propagation hops of this gossip.

Algorithm description For each item in a list gl com-
ing from a neighbor source, the following algorithm is per-
formed on the current node:

• Cycle detection step: if a gossip gli comes back to its
initial node si (this means the gossipy agent has moved
along a ring), this gossip is deleted from the list gl.

• Hint management step:

– if a hint <Ai, n
′
i, s

′
i, d

′
i> already exists about the

agent Ai, then the new gossip is used to update
the existing hint if and only if the path length di

is shorter than d′i. In such a case, the hint is as-
signed the value < Ai, source, si, di, >.

– if no hint about Ai is available, a new hint
<Ai, source, si, di> is recorded and if applica-
tive agents were currently waiting for such a hint,
they are all notified.

• Gossip list update: for each applicative agent located
on the current host, a new gossip is created and inserted
in the gossip list gl of the agent for further propaga-
tions. When a gossipy agent leaves a node, it carries
this final updated list.

3.2. Piggybacking-based implementation

All mobile agents in the system are involved in the lo-
cation service. In this implementation, rumors are propa-
gated by applicative mobile agents themselves. An applica-
tive agent is never blocked during its migration steps (non-
blocking strategy). If an agent invokes the toward primitive
and it does not obtain an available hint, it then migrates at
random. In this implementation, an agent can be blocked if
and only if its host is partially disconnected.

This implementation only requires basic hints. A hint is
a pair <agent, neighbor>. The applicative agents piggy-
back the same gossip lists as the gossipy agents. However,
their use partially differs. The first steps are similar: be-
fore leaving a node, agents located on the current node are
inserted in the gossip list and, on the destination node, an
agent coming from a node source, uses its current piggy-
backed gossip list to update the local hints.

For each item in a gossip list gl, the following algorithm
is performed:

• Cycle detection step: if a gossip gli comes back to its
initial node si (this means the gossipy agent has moved
along a ring), this gossip is deleted from the list gl.

• Hint management step: if a hint < Ai, n
′
i > already

exists about the agent Ai, then the new gossip is used
to update the existing hint else a new hint is created.

• Gossip list update: the gossips with a distance d
greater than a maximum fixed hop number are re-
moved (propagation over a limited neighborhood).

4. Performance Analysis

We present experimentation results obtained with a sim-
ulator we have developped in Java. The simulation aims at
evaluating global performance of the proposed location ser-
vice by comparing the two implementations. It should be
noted that the performance of a mobile agent-based appli-
cation is mainly determinated by the cost due to the number
of migrations.

The simulation platform implemented in Java, has the
three following main modules : a supervision module in

- 151 -- 151 -- 150 -            - 150 -            - 150 -0000000000- 150 -                               - 150 -                               - 151 -                               - 152 -                               - 152 -                               - 153 -                               - 153 -                               - 153 -                               - 153 -                               - 153 -                               - 153 -                               - 153 -                               - 153 -                               - 153 -                               - 153 -                                                              - 159 -                               - 159 -



 0

 10

 20

 30

 40

 50

 60

 70

 80

 100  150  200  250  300

av
er

ag
e 

nu
m

be
r 

of
 m

ig
ra

tio
ns

 p
er

 m
ee

tin
g

network size

15 gossipy agents
piggybacking

random

Figure 2. Network overhead comparison

charge of checking the simulation duration and mobile
agents activity, a mobility management module in charge
of making site neighborhood updates (it is assumed in this
simulation that a node has an average of 4 one-hop neigh-
bors) and a mobile agent management module in charge of
the agent life cycle including their migrations.

We assume the agents are reliable and the nodes are in-
finitely often connected. A simulation starts with agents
located at random on nodes. An applicative agent repeats
the following behavior until the end of the simulation:

• first, it chooses a target agent at random to cooperate
with,

• then, it migrates toward the host of the target agent
using the location service,

• finally, when it arrives at the site of its target, it coop-
erates during a bounded service time with its target.

The principle of our simulation is to count, on the one
hand the total number of migrations (hops) σh(t) done by
the applicative mobile agents and on the other hand the total
number of meetings σm(t) performed by these agents in
order to calculate the average number A(t):

A(t) =
σh(t)
σm(t)

This number represents the average number of migra-
tions performed by a mobile agent before meeting a target
(≡ the tracking path length) and indicates the efficiency of
the location service.

The gossipy agent-based and piggybacking implementa-
tions are compared to each other and compared to the ran-
dom migration scheme according the following criteria:

• network overhead (average number of migrations per
meeting)

• meeting rate (average time needed to realize a meeting)

• stability (variation of average numbers according to the
network size)

We fix the average number of neighbors of each node
(namely 4) and we consider the following parameters: num-
ber of nodes, number of applicative agents, number of gos-
sipy agents. The number of nodes (size of the network) is in
the range [100 : 300]. The experimentation was done with
100 applicative agents and 15 gossipy agents. The mobility
of gossipy agents is 1000 times faster than the mobility of
nodes.

In figure 2, results show that these two implementations
are better than the random migration scheme with respect
to the network overhead. The piggybacking approach re-
duces this number about 2 times. The use of gossipy agents
reduces 5 times the average number of migrations.

With gossipy agents, the average number of migrations
per meeting increases very slowly according to the num-
ber of gossipy agents. For instance, with a network size in
the range [100 : 300], this average number remains almost
constant if the actual number of gossipy agents is beyond a
threshold of fifteen agents. Moreover, the average number
of migrations per meeting also appears closed to the net-
work diameter.

With the piggybacking solution, gossips are only prop-
agated over a limited neighborhood, namely less than five
hops. Greater values do not provide any significative im-
provement of the service performance.

Figure 3 shows the variation of the number of meetings
during one-hour simulations. This parameter quantifies the
performance of the service with respect to the same applica-
tive agent load. We can deduce from this value a mean trak-
ing time: if n meetings occur in an hour, the mean track-
ing time in seconds is 3600/n. The piggybacking approach
gives the best results (the greatest number of meetings dur-
ing a simulation). The following table compares the mean
tracking time to satisfy an outstanding meeting request to
the network overhead with 100 nodes.

implementation tracking time network overhead
no service 1.56 sec. 56 hops

piggybacking 1 sec. 35 hops
gossipy agents 7.80 sec. 12 hops

The gossipy agent-based location service minimizes the
network overhead but increases the average response time
and the piggybacking approach minimizes the response
time but increases the network overhead. According to
the application requirements, the most efficient implemen-
tation can be chosen. Moreover, with gossipy agents and

- 152 -- 152 -- 151 -            - 151 -            - 151 -0000000000- 151 -                               - 151 -                               - 152 -                               - 153 -                               - 153 -                               - 154 -                               - 154 -                               - 154 -                               - 154 -                               - 154 -                               - 154 -                               - 154 -                               - 154 -                               - 154 -                               - 154 -                               - 160 -                               - 160 -                               - 160 -



 0

 1000

 2000

 3000

 4000

 5000

 6000

 100  150  200  250  300

nu
m

be
r 

of
 m

ee
tin

gs
 p

er
 h

ou
r

network size

15 gossipy agents
piggybacking

random

Figure 3. Meeting rate comparison

a blocking strategy, applicative agents can also perform ru-
mor propagation in the same way as gossipy agents. Their
participation decreases the mean tracking time but this im-
provement strongly depends on the number of applicative
agents.

5. Conclusion

Throughout this study, we have proposed two different
implementations of a fault-tolerant ad hoc location service.
Our gossipy agent-based approach avoids message flooding
generally used for rumor propagation. Moreover, the hint
update does not require a datation mechanism.

The simulation has shown that this location service im-
proves the performance of the application by actually de-
creasing the network overhead. The average number of
migrations is reduced around twice with the piggyback-
ing implementation. In the case of the gossipy agent-based
scheme, this average number is reduced about five times.

As a future work, we have to evaluate the impact of gos-
sipy agents with respect to the network overhead. We want
also implement a slightly different version of the gossipy
agent-based solution. In this version, a deadline will be as-
signed to the waiting time for a hint. If a deadline occurs,
by default, the requesting agent will perform a migration
at random. We have to verify whether a higher meeting rate
will be obtained with such a version without a too expensive
augmentation of network overhead.

Acknowledgments The authors would like to thank the
referees for their useful remarks and encouraging com-
ments.

References

[1] B. Awerbuch and D. Peleg. Online tracking of mobile users.
In Proceedings of the ACM SIGCOMM Symposium on Com-
munication Architectures and Protocols, 1991.

[2] M. Bui, S. K. Das, A. K. Datta, and D. T. Nguyen. Ran-
domized mobile agent based routing in wireless networks.
International Journal of Foundations of Computer Science,
12(3):365–384, 2001.

[3] C. Cubat dit Cros. Agents mobiles coopératifs pour les envi-
ronnements dynamiques. In Les Nouvelles Technologies de
la Répartition NOTERE’2004, Saidia, Maroc, juin 2004.

[4] A. Demers et al. Epidemic algorithms for replicated
database maintenance. In 6th Symposium on Principles of
Distributed Computing, pages 1–12, Aug. 1987.

[5] J. Desbiens, F. Renaud, and M. Lavoie. Communication and
tracking infrastructure of a mobile agent system. In Thirty-
First Annual Hawaii International Conference on System
Sciences, volume 7, pages 54–63, January 1998.

[6] S. Dolev, E. Schiller, and J. Welsh. Random walk for self-
stabilizing group communication in ad hoc networks. In
Proceedings of the twenty-first annual symposium on Prin-
ciples of distributed computing (PODC’02), pages 259–259,
New York, NY, USA, 2002. ACM Press.

[7] P. Domel. Mobile Telescript agents and the Web. In Digest
of Papers. COMPCON ’96. Technologies for the Informa-
tion Superhighway. Forty-First IEEE Computer Society In-
ternational Conference, pages 52–57. IEEE Computer Soci-
ety Press, February 1996.

[8] A. Fuggetta, G. P. Picco, and G. Vigna. Understanding
Code Mobility. IEEE Transactions on Software Engineer-
ing, 24(5):342–361, May 1998.

[9] C. Gkantsidis, M. Mihail, and A. Saberi. Random walk in
peer-to-peer networks. In INFOCOM, The Conference on
Computer Communications. IEEE, 2004.

[10] R. S. Gray, D. Kotz, G. Cybenko, and D. Rus. D’agents: Se-
curity in a multiple-language, mobile-agent system. LNCS,
1419:154–187, 1998.

[11] JinHoAhn. Decentralized inter-agent message forwarding
protocols for mobile agent systems. In Computational Sci-
ence and Its Applications ICCSA 2004: International Con-
ference, volume 3045, pages 376–385. LNCS - Springer-
Verlag, May 2004.

[12] D. B. Lange and M. Oshima. Programming and Deploying
Java™Mobile Agents with Aglets™. Addison-Wesley, 1998.

[13] L. Li, J. Halpern, and Z. Haas. Gossip-based ad hoc routing.
In INFOCOM, The Conference on Computer Communica-
tions. IEEE, June 23-27 2002.

[14] L. Moreau. Distributed directory service and message rout-
ing for mobile agents. Science of Computer Programming,
39(2-3):249–272, March 2001.

[15] A. Ohsuga, Y. Nagai, Y. Irie, M. Hattori, and S. Honiden.
PLANGENT: an approach to making mobile agents intel-
ligent. IEEE Internet Computing, 1(4):50–57, July/Aug.
1997.

[16] P. T. Wojciechowski. Algorithms for location-independent
communication between mobile agents. In Proceedings
of Artificial Intelligence and the Simulation of Behaviour
(AISB ’01) Symposium on Software Mobility and Adaptive
Behaviour, march 2001.

- 153 -- 153 -- 152 -            - 152 -            - 152 -0000000000- 152 -                               - 152 -                               - 153 -                               - 154 -                               - 154 -                               - 155 -                               - 155 -                               - 155 -                               - 155 -                               - 155 -                               - 155 -                               - 155 -                               - 155 -                               - 155 -                               - 155 -                                                              - 161 -                               - 161 -




