
Consistency Checking for Interactive Multimedia Presentations

Susan Elias
Department of Computer Science

and Engineering
Sri Venkateswara College of Engineering

Chennai - 602 105, India.
susan@svce.ac.in

K. S. Easwarakumar
Department of Computer Science

and Engineering
Anna University

Chennai - 600 025, India.
easwara@cs.annauniv.edu

Lisa Mathew
Department of Mathematics

Vellore Institute of Technology
Vellore - 632 014, India.
lisa mat@rediffmail.com

Richard Chbeir
Computer Science Department
LE2I - Bourgogne University

BP 47870 21078, Dijon CEDEX France.
rchbeir@u-bourgogne.fr

Abstract
Multimedia presentations are generally specified in

terms of spatial and temporal relations between the media
objects involved. Creation of these presentations, and in-
teractions with them during their play-out, require an effec-
tive mechanism for handling the specifications dynamically.
Further, these specifications could result in inconsistencies,
which need to be checked and resolved. Our main contri-
bution is the design of an algorithm which aids in resolving
these consistency issues dynamically and efficiently. The
other salient features of our approach are a new composite
spatio-temporal operator and an effective relaxation policy.
Thus, this paper presents an interactive multimedia presen-
tation mechanism, which maintains a consistent and com-
plete set of constraints during authoring and play-out of the
presentation.

1 Introduction
Interactive presentations that involve multimedia objects

are used in diverse fields including education, entertainment
and advertising. The creation of an effective presentation
requires imagination and skill. These presentations involve
explicit spatial and temporal relations which are specified in
the form of constraints while authoring. However, some of
these constraints could contradict each other and hence lead
to inconsistencies. An example is given in the next sec-
tion to show how inconsistencies arise while defining con-
straints. When the number of objects and / or constraints
is large, the author of the presentation may not be aware of
the inconsistencies while creating the presentation. Hence
these inconsistencies have to be identified and removed by

the presentation process prior to the play-out. Consistency
checking issues are also discussed in [1, 2, 3] , an analysis of
the consistency models for distributed interactive multime-
dia applications is presented in [4], and in [5] a mechanism
has been proposed to resolve inconsistencies dynamically.

In this paper, we have enhanced the dynamic consis-
tency checking approach proposed in [5]. The relaxation
policy employed by our approach uses the classification of
relations introduced in [6] to effectively resolve inconsis-
tency. As a result we have achieved a considerable reduc-
tion in time complexity. Mechanisms for creation and in-
teraction with multimedia presentations have been studied
extensively. While [7] deals with interaction in terms of
navigation of the presentation, we focus on the interaction
with the presentation, as discussed in the reference model
presented in [8]. Moreover, the composition of the spatial
and temporal relations as discussed in [9] has been modeled
using a spatio-temporal operator and this helps in the ef-
fective generation of the presentation layout. Our proposed
approach would allow the user to change the spatial and
temporal layout i.e it permits interaction with the presenta-
tion during authoring as well as during play-out, while still
effectively resolving spatio-temporal consistency issues.

The rest of the paper is organised as follows. In section 2,
we illustrate the concepts of consistency and completeness
of constraints. Section 3 provides an overview of the related
work in the area of multimedia constraint checking. Section
4 is devoted to our proposed method for checking consis-
tency and completeness of multimedia constraints. The last
section summarises the paper and provides an overview of
our future work.

2-9525435-0 © IEEE SITIS 2005 - 201 -- 201 -- 200 - - 200 - - 200 -0000000000- 200 - - 200 - - 201 - - 202 - - 202 - - 203 - - 204 - - 204 - - 204 - - 204 - - 204 - - 204 - - 204 - - 204 - - 204 - - 210 - - 210 -

2 Motivation

Multimedia presentations require the specification of the
exact location in time and space for each participating me-
dia object prior to its play-out. However, instead of specify-
ing the actual starting and ending time, and spatial locations
of each object, it would be convenient to specify the rela-
tionship between them. For instance, consider two media
objectsA andB. Temporal and Spatial relations betweenA
andB may be given in the form of constraints such as:

T1: B starts 5 seconds after A.
S1: The left top corner of A is 50 pixels above and

20 pixels to the left of that of B.
Consider a new objectC in addition toA andB specified
earlier. Now, we add two new temporal constraints:

T2: C starts 10 seconds after Band
T3: A and C start together.

As per the temporal constraintsT1 andT2, C should start
15 seconds afterA, in contradiction toT3, which says that
they start together. Obviously, all three constraints cannot
be satisfied at the same time. This situation is referred to
as atemporal inconsistency. In order to avoid such a sit-
uation, the constraints have to be checked thoroughly and
one of the constraints (for instanceT3) has to be removed in
order to ensure consistency prior to the play out. Similarly,
spatial inconsistencies may appear and need to be checked.
Suppose in addition to the three objectsA, B andC spec-
ified earlier, we add two more media objectsD andE and
one more constraint:

T4:D starts 5 seconds after E.
At this point, we do not know anything about the relation-
ship ofD or E with any of the existing media objectsA, B or
C. This leads to a discontinuity in the presentation. Hence,
we need to specify at least one more constraintT5 to re-
move this discontinuity and ensurecompletenessof the set
of constraints.

In case of an inconsistency occurring among a group of
constraints, one of them may need to be dropped to obtain
a consistent set. This is usually done by attaching aprior-
ity valueto each constraint. An edge with a lower priority
value is normally considered to be more important than one
with a higher value . Thus an edge with priority value 1 has
a higher priority than an edge with a priority value 2. The
assignment of the priority may be done either by the user,
or by the algorithm under the influence of a policy which
may be designed to suit the application. Normally, a con-
straint with the least priority is dropped to resolve inconsis-
tency. However, in some cases especially when the choice
is between two or more constraints of the same priority are-
laxation policyhas to be employed to choose one of them.
Although this discussion deals with consistency checking of
temporal constraints only, it is also applicable to any other
type of relation between two media objects, which could be
modeled as a constraint.

3 Related Work

3.1 Consistency Checking
A formal approach toward consistency checking of in-

teractive multimedia documents was dealt with in [2], using
the formal description technique RT-LOTOS. Here the high
level specification of the multimedia documents is automat-
ically translated into the RT-LOTOS specification, and from
this a minimal reachability graph is generated. Consistency
analysis is then performed on this graph. If the document is
found to be consistent the scheduling graph is generated.

In [3], an approach for temporal consistency checking
based on the transformation of scenario specification into
networks, called constraint network fragments (cnfs) is pre-
sented. The rules for building these constraint networks,
corresponding to the fundamental functional units of the
scenario are defined, and along with temporal constraint
verification techniques provide the basis for checking the
consistency of the scenario.

A graph-based method was proposed in [1] for analyz-
ing multimedia constraints for consistency and complete-
ness. While authoring a multimedia presentation, the syn-
chronization specifications were modeled as a set of con-
straints. These constraints were then used to generate a di-
rected graph known as the temporal consistency graph. The
vertices of this graph represented the media objects while
the edges represented relations between them. For instance,
in the earlier example the vertex set was{A,B,C,D,E}, while
the edges were{T1,T2,T3,T4,T5 }.

The connectivity of the underlying undirected graph was
used to check for completeness. Since every cycle in this
graph represented a possible inconsistency, the paper fo-
cused on finding a acyclic graph connecting all vertices
(i.e. a spanning tree). In order to find the best set of con-
straints the priorities attached to the constraints were used as
weights for finding a minimal spanning tree using Kruskal’s
algorithm [10]. The constraints that were left out by the
Kruskal’s algorithm were examined once again for possi-
ble inclusion with the help of an appropriate relaxation pol-
icy. Thus their work consisted of five phases for dealing
with the temporal constraints visualization - preprocessing,
completeness checking, construction of minimal spanning
tree, removing inconsistencies using a relaxation policy and
generation of the temporal layout. This was followed by a
similar discussion on dealing with spatial constraints.

The temporal layout generated for a given specification
gave rise to a number of presentation intervals. Within each
of these intervals the spatial consistency had to be checked
independently. The method for checking spatial consistency
was similar to that used for temporal consistency checking
with the same five phases repeated. Although the paper also
talks about interactive authoring, it does not allow for dy-
namic consistency checking, which would have permitted

- 202 -- 202 -- 201 - - 201 - - 201 -0000000000- 201 - - 201 - - 202 - - 203 - - 203 - - 204 - - 205 - - 205 - - 205 - - 205 - - 205 - - 205 - - 205 - - 205 - - 205 - - 211 - - 211 -

the algorithm to respond to inconsistencies while the pre-
sentation is being created.

3.2 Dynamic Consistency Checking

In the method discussed above, consistency checking
could be performed only after the entire set of constraints
were available. This was improved upon [5] and was made
dynamic by examining each constraint immediately on in-
put. For the implementation of this method, the functionally
complete temporal operator given below was proposed:
TEMPORAL(A, B,d1, d2, priority)
whered1 = bB − bA andd2 = tB − tA. HerebA, tA and
bB , tB are the beginning and end times of the media objects
A andB respectively andpriority is the priority value as-
signed to the constraint.This operator was used to specify
the temporal relations as a set of constraints. The consis-
tency checking algorithm in [1] was made more efficient
by eliminating some of the redundant steps. The new algo-
rithm was designed to examine each constraint immediately
on input for possible inconsistency with those already in the
tree. This process helps to construct the spanning tree dy-
namically.

The major difference between [1] and [5] is that pre-
processing was eliminated totally in [5] and the rest of
the phases were combined and performed simultaneously,
thereby reducing the total running time of the algorithm. As
a result consistency checking could commence immediately
on input of the first constraint unlike [1] were the entire set
of constraints needs to be input before the procedure could
begin. In case a cycle was identified while checking for
possible inclusion in a spanning tree, it was recognised as
an inconsistency. Then one of the constraints was dropped,
using an appropriate relaxation policy. Finally, when all the
constraints had been input, the resulting graph was exam-
ined for completeness and the user was prompted to spec-
ify an appropriate constraint to resolve any possible incom-
pleteness. The functionally complete spatial operator given
below, was also proposed in [5] to capture the spatial con-
straints effectively and is given below:
SPATIAL(A, B,dl, dr, db, du, dz, priority)
wheredl = xlB − xlA , dr = xrB

− xrA
,

db = ydB
− ydA

, du = yuB
− yuA

, dz = zB − zA and
(xlA , xrA

, ydA
, yuA

) and (xlB , xrB
, ydB

, yuB
) are the mini-

mum bounding boxes of two objectsA andB respectively,
while zA andzB represent their depth information andpri-
ority is the priority value assigned to the constraint. The
spatial consistency checking within each temporal interval
was dealt with in a manner similar to their respective tem-
poral consistency checking mechanisms.

We illustrate the algorithm with the help of our earlier
example. Consider a multimedia presentation involving 5
multimedia objectsA, B C, D andE and 5 temporal con-
straints as follows:
T1:TEMPORAL(A,B,5,10,1)
T2:TEMPORAL(B,C,10,0,1), T3:TEMPORAL(A,C,0,10,2)
T4:TEMPORAL(A,B,3,5,3), T5:TEMPORAL(D,E,5,10,3)
For this presentation we assume that the object A starts at time 0

0 5 10 15 30 40

A
B

C
D

E

l l
l

l
lA

B

C

D

E

��� @@R

@@R

@@R

l l
l

l
lA

B

C

D

E

��� @@R

@@R

-

(a) (b)

(c)

Figure 1. Presentation Layout

and its length is 30 seconds.The spanning tree created is shown in
Figure 1(a) and 1(b) and the temporal layout in 1(c). The algo-
rithm works as follows:

SinceT1 andT2 do not give rise any inconsistency they are
included in the spanning tree. SinceT3 is inconsistent with the
above constraints it is dropped since it has a lower priority than
T1 andT2. Again T4 is dropped since it is inconsistent withT1.
Next T5 is included. Since all the constraints specified have been
checked the algorithm now checks for completeness and prompts
the user to specify a new constraintT6 to generate a complete set
of constraints. Suppose the user specifies the new constraint as
T6:TEMPORAL(A,D,10,10,1). At this stage the algorithm finds
that the tree is complete and hence it generates the temporal lay-
out. A similar algorithm was used to check the spatial constraints
between the media objects present in each interval for consistency.

3.3 Limitations of the existing mechanism

• In [5] the temporal and spatial constraints were dealt with
separately. After the temporal layout was generated each pre-
sentation interval was examined and the spatial constraints
between the objects appearing in them were examined for
consistency. Although this approach allowed dynamism
in dealing with temporal constraints, the spatial constraints
could be dealt with only after all the temporal constraints
had been processed. Hence dynamism could not be extended
to the spatial constraints. For instance, the temporal layout
in Figure 1(c) has five presentation intervals (a presentation
interval represents an interval of time during which the par-
ticipating media objects remain the same). Now, the algo-
rithm accepts spatial constraints for each of the five intervals
and generates spanning trees for each of them. Thus, for the
above illustration the algorithm would require the generation
of six (one for temporal constraints and five for spatial con-

- 203 -- 203 -- 202 - - 202 - - 202 -0000000000- 202 - - 202 - - 203 - - 204 - - 204 - - 205 - - 206 - - 206 - - 206 - - 206 - - 206 - - 206 - - 206 - - 206 - - 206 - - 212 - - 212 -

straints) spanning trees and their respective layouts to gener-
ate a consistent presentation schedule.

• For presentations with rapid changes in media objects, the
existing approaches would not be efficient. Moreover, spatial
specifications between pairs of media objects appearing in
more than one interval need to be repeated in each such inter-
val. Also incompleteness in each of the intervals could result
in the algorithm prompting the user for more constraints. Al-
though this method could be extended to support interactions
with the presentation during play-out it is seen that each time
a temporal constraint is modified by the user all the spanning
trees for the spatial constraints may have to be regenerated.
As a result, this approach would be inefficient in terms of the
response time during interaction.

In this paper, we have overcome these limitations by designing an
integrated operator for representing both the temporal and spatial
relations. As a result the entire process would require just one
spanning tree regardless of the number of presentation intervals
generated. This leads to the development of a consistency check-
ing mechanism which is highly responsive to interactions with the
presentation during play-out and which achieves a considerable
reduction in the time complexity in comparison with [1] and also
with [5].

4 Proposed Approach
In order to overcome the drawbacks in [1] and [5], spatial and

temporal relations between two objects need to be combined and
represented using the same binary relation. For this purpose we in-
troduce a new composite spatio-temporal operator ST, which helps
to capture all aspects of the relationship between two media ob-
jects in an effective way. It is defined as
ST(A, B,dt1 , dt2 , dt3 , dt4 , dl, dr, db, du, dz, flag, priority)
wheredt1 = bB − bA , dt2 = tB − tA , dt3 = bB − tA ,
dt4 = tB − bA, dl = xlB − xlA , dr = xrB − xrA ,
db = ydB − ydA , du = yuB − yuA , dz = zB − zA

The flag in the operator is used to indicate, the presence or absence
of the spatial relationship betweenA andB, using 1 or 0 respec-
tively. The absence of a spatial relation occurs when eitherA or
B or both of them are audio elements. The priority is assigned
by the algorithm and is used by the relaxation policy to resolve
inconsistency.

4.1 Algorithm for consistency checking of spatio-
temporal constraints

The composite operator defined above enables the algorithm to
generate a consistent set of constraints by building a single span-
ning tree for the entire presentation. Thus temporal and spatial
constraints are checked simultaneously . In algorithm 1,V rep-
resents the set of nodes of the generated spanning treeT, while
E represents the set of its edges. We make use of the the fol-
lowing subroutines:MAKE-SET(i): creates a new set with repre-
sentativei. The only member of this new set is the elementi.(A
representative of a set is any one element chosen from the set to
uniquely identify the set. This element could be chosen using any
arbitrary rule. Here for instance, we just consider the first ele-
ment in the lexicographic ordering of the elements of the set, to

be the representative).FIND-SET(i): returns a pointer to the repre-
sentative of the set containingi.UNION(i,j): merges the two sets
corresponding to the elementsi and j and assigns the representa-
tive of one of the two sets as the representative of the new set.
LIST(S): enumerates the elements of set S.RELAX(path): imple-
ments the relaxation policy.DFS(S,i,j): performs a Depth-First-
Search and returns a path that starts atj and ends ati. Here, it is
also used to keep track of the edge with the largest priority value
encountered.BFS(T): performs a Breadth-First-Search of the span-
ning tree.In the following, we explain the three steps of our algo-
rithm:

Algorithm 1 : IntegratedConCheck()
Input : E = NULL, V = NULL
Output : T, I
while user generates constraintsdo1

ST (i, j, dt1 , dt2 , dt3 , dt4 , dl, dr, db, du, dz, flag,priority)2
⇐ constraint
if (i /∈ V) then3

move i to V4
do MAKE-SET(i)5

end6
if (j /∈V) then7

move j to V8
do MAKE-SET(j)9

end10
if (FIND-SET(i)6= FIND-SET(j))then11

E=E∪ e(i,j)12
UNION(i,j)13

end14
else15

S = FIND-SET(j)16
path= DFS(S,i,j)17
RELAX(path)18

end19

end20

R=V21

i=122

while R6= NULL do23

S= FIND-SET(i)24

R=R-LIST(S)25

Choosej ∈ R26

input constraint e(i,j)27

E= E ∪ e(i, j)28

i = j29

end30

Input dimensions of the first object i31

T = (V,E); path = BFS(T) /*Starting at i*/32

for each e(i,j)∈ pathdo33

determine length of j /* where i is the object whose34

dimensions are known*/
schedule the begin and the end events for j35

end36

Sort all events in temporal order37

Generate the spatio-temporal layout38

1. Consistency checking: is done in steps 1 to 20. The span-
ning tree is created as follows: A collection of disjoint sets of
vertices is initialized by invoking the subroutineMAKE-SET
each time a new vertex appears. In order to check whether
there is a path inT between two verticesi and j, we use
the subroutineFIND-SET on each of them. If the the sets

- 204 -- 204 -- 203 - - 203 - - 203 -0000000000- 203 - - 203 - - 204 - - 205 - - 205 - - 206 - - 207 - - 207 - - 207 - - 207 - - 207 - - 207 - - 207 - - 207 - - 207 - - 213 - - 213 -

containing verticesi and j have the same representative , it
indicates thati and j belong to the same set and also that
there exists a path between them. Hence in case at some
point of time, while processing an edgee(i,j) we find that
i and j are not connected by any path (i.e they do not have
the same representatives) then, we can safely add the edge
to get a new graph which is still acyclic. However, once this
is done, we should merge the sets containing these two ver-
tices so that any future invocation ofFIND-SETwill return
the same representative for both sets. This is done by using
UNION(i,j). On the other hand, ifi and j are already con-
nected by a path,FIND-SET(i) in co-ordination withLIST
and DFS helps to identify the path which along with the
newly input edge forms a cycle. In order to ensure consis-
tency and maintain the acyclic nature of T, one of the edges
on this path has to be dropped. The choice of which edge
is to be dropped is made by usingRELAX(path) which im-
plements the relaxation policy discussed in the next section.
The DFS subroutine also keeps track of the edge with the
lowest priority encountered.

2. Completeness checking of constraints: is done in steps 21
to 30 usingFIND-SET andLIST to find all the vertices in
the set containing the first media object. If this generates
the whole of V, the set of constraints is complete indicat-
ing that the media objects that belong to the presentation are
directly or indirectly related to the first media object. Other-
wise, the algorithm prompts the user to supply an appropriate
constraint to make the set of constraints complete.

3. Temporal layout generation: is handled by steps 31 to 38.
The user is prompted to give the length of the first media
object. A Breadth First Search (BFS) beginning at this vertex
is performed . Thestart and end events for each node in
the path returned byBFS is next generated. These events
are sorted and temporal layout of the entire presentation is
formulated from this sorted list of events.

4.1.1 Relaxation policy

In [6], the authors proposed a meta-model which was used
to classify relations. This model helped spatial and temporal
relations to have more expressive power. For instance, the authors
have identified the existence of 33 temporal relations between
two intervals instead of 13 that are traditionally used by several
applications. On the basis of the proposal provided in [6], a
relaxation policy was designed to resolve inconsistencies. In order
to classify the temporal relations as given below a threshold value
is chosen.

Class 1. Begins together
Ends together

Class 2. Begins / Ends just before the beginning / ending
Begins / Ends just after the beginning / ending

Class 3. Begins / Ends before the beginning / ending
Begins / Ends after the beginning / ending

Combinations of Class 1 are assigned priority 1
Combinations of Class 1 and 2 are assigned priority 2
Combinations of Class 1 and 3 are assigned priority 3
Combinations of Class 2 and are assigned priority 4

Combinations of Class 2 and 3 are assigned priority 5
Combinations of Class 3 are assigned priority 6

Given a constraint the values assigned todt1 , dt2 , dt3 , dt4 are
checked to determine which class they belong to. Then the con-
straint is assigned a priority as given below.For instance, consider
the threshold value to be 5 secs. Then a relation is assigned prior-
ity 1 if two of these values are zero (i.e begin and end together).
If one of these values is zero and one of the others is less than the
threshold , then it is assigned a priority 2. In a similar manner,
priorities are assigned in other cases. The edge in consideration
is dropped when its priority happens to be equal to or less than
the value detected in the path by DFS. Thus the relaxation policy
which is employed when a cycle is detected in the spanning tree,
has been designed to retain temporal relations that are closer (de-
fined by the threshold) by assigning them higher priority. In case
the priority of the edge under consideration is higher than that de-
tected in the path this edge is inserted into the tree and the con-
straint in the path having the lowest priority is removed to avoid a
cycle in the spanning tree, thus resolving inconsistency.

4.1.2 Illustration
We consider again the example given in [1]. The multimedia
scenario of 40s first presents a 10s logo consisting of a Logo-
Animation(A) and Logo-Music(B). Then 20s of Audio1(C) is
played with Video1(D). Text(E) will be displayed while playing
D. The presentation ends with 10s of Exit-Animation(F) along
with an Exit-Music(G). A background (H) and a caption (I) will be
present throughout the entire presentation. Assume the screen res-
olution to be 512 x 512 with the origin at the lower left corner. The
background object is assumed to be the source of the presentation,
occupying the entire screen having 0 as its z value and commenc-
ing at time zero. The above scenario can be specified in the form
of the following constraints. The priority that would be assigned
by the algorithm is also indicated.
ST1 = ST(A,B,0,0,-10,10,0,0,0,0,0,0,1)
ST2 = ST(D,E,4,0,-16,20,156,-156,456,-16,0,1,2)
ST3 = ST(C,D,0,0,-20,20,0,0,0,0,0,0,1)
ST4 = ST(C,G,20,10,0,30,0,0,0,0,0,0,3)
ST5 = ST(G,F,0,0,-10,10,0,0,0,0,0,0,1)
ST6 = ST(C,E,0,-4,-30,16,0,0,0,0,0,0,2)
ST7 = ST(D,F,15,5,0,30,56,-56,56,-56,0,1,2)
ST8 = ST(H,A,0,-30,-40,10,56,-56,56,-56,20,1,3)
ST9 = ST(A,I,0,30,-10,40,50,-50,-40,-400,-10,1,3)
ST10 = ST(H,D,10,-10,-30,30,0,0,0,0,20,1,6)
ST11 = ST(D,I,-10,10,-30,30,106,-106,16,-456,-10,1,6)
ST12 = ST(H,E,14,-10,-26,30,156,-156,436,-36,20,1,6)
ST13 = ST(H,F,30,0,-10,40,56,-56,56,-56,20,1,3)
ST14 = ST(F,I,-30,0,-40,10,50,-50,-40,-400,-10,1,3)

In the above example, the relaxation policy would be employed
by the algorithm six times each time dropping a constraint that
is deemed least important. The output spanning tree is given in
Figure 2(c) The structure of the tree after the input ofST6is shown
in 2(a) and afterST7in 2(b)

4.2 Support for interactive authoring and play-
out

The specification set of the presentation may require addition
and deletion of objects and constraints. Addition is handled in the

- 205 -- 205 -- 204 - - 204 - - 204 -0000000000- 204 - - 204 - - 205 - - 206 - - 206 - - 207 - - 208 - - 208 - - 208 - - 208 - - 208 - - 208 - - 208 - - 208 - - 208 - - 214 - - 214 -

l
l l l

l l l l l
H

A F D

B I G C E

��= ZZ~
�

�
�/

A
AU ���

A
AU6

(c)

l l l
l l l l

A F D

B G C E

�

�
�/ ���

A
AU6

(b)

l l l
l l l l

A F D

B G C E

�
�/ ���

A
AU6

(a)

� �-

Figure 2. Construction of the Spanning Tree

same way as the algorithmIntegratedConCheckhandles any new
object or constraint during its execution. Updating of constraints
i.e. changing the temporal and spatial values specified in the ST
operator can also be permitted. But this would require that appro-
priate changes be made to all other related constraints followed
by a regeneration of the layout as in steps 31 to 38. Deletion of
a constraint would require the algorithm to check again for com-
pleteness and then generate the layout as given in steps 21 to 38.
However, deletion of an object requires in addition the deletion of
all the constraints associated with that object.

Normally the presentations are generated from the layouts de-
signed. Navigation of the authored presentation can be easily sup-
ported in our approach as in [7]. Interaction with the presentation
(i.e. making permitted alteration to the temporal and spatial lay-
outs) can also be effectively supported by our method. This is
done by ensuring that the spanning tree built during authoring is
made available by regenerating it in the background while the pre-
sentation is being played. The interactions with the presentation
are captured again as constraints and dealt with appropriately for
addition, deletion and updation as discussed above.

4.3 Complexity

Consider the algorithmIntegratedConCheck. Assume that the
presentation has m constraints and deals with a total of n objects.
The algorithm has nMAKE-SEToperations requiring timeO(n),
m FIND-SEToperations requiring timeO(m), n-1 UNION oper-
ations requiring timeO(mα(m, n)) [11], m-n+1DFS operations
requiring requiring timeO(n(m-n))and one sort operation requir-
ing time O(nlogn). Hence the total time complexity of the algo-
rithm is O(mn)[12].

5 Conclusion
This paper introduces an operator to model spatio-temporal re-

lations to be used as constraints in a multimedia presentation speci-
fication. The use of the operator in addition to the simplification of
the algorithm, has also helped to achieve a constant time reduction
in the time complexity while simultaneously being highly respon-
sive to interactions with the presentation during play-out. We have

thus presented an approach for consistency checking of spatio-
temporal relations and an effective relaxation policy which sup-
ports interactive authoring and play-out. Our future work would
include the use of a formal approach for consistency checking and
support for interaction to enhance the capabilities of the method to
support complex distributed multimedia applications and Quality-
of-Presentation guarantees.

References

[1] H. Ma and K. G. Shin, “Checking consistency in multime-
dia synchronization constraints,”IEEE Trans. Multimedia,
vol. 6, pp. 565–574, Aug. 2004.

[2] P. N. M. Sampaio and J. P. Courtiat, “A formal approach
for the presentation of interactive multimedia documents,” in
Proceedings of the eighth ACM international conference on
Multimedia, Marina del Rey, California, United States, Oct.
2000, pp. 435 – 438.

[3] I. Mirbel, P. Pernici, and M. Vazirgiannis, “Temporal in-
tegrity constraints in interactive multimedia documents,”
in Proceedings ACM Multimedia’93, Anaheim, CA, Aug.
1993, pp. 341–350.

[4] N. Bouillot and E. Gressier-Soudan, “Consistency models
for distributed interactive multimedia applications,”ACM
SIGOPS Operating Systems Review archive, vol. 38, no. 4,
pp. 20–32, 2004.

[5] S. Elias, K. S. Easwarakumar, L. Mathew, and R.Chbeir,
“Dynamic consistency checking for spatio-temporal rela-
tions,” in Submitted to The 21st ACM Symposium on Aplied
Computing, Dijon,France, 2006.

[6] R. Chbeir, Y. Amghar, and A. Flory, “High expressive spatio-
temporal relations,” inSpecial Track On Spatiotemporal
Reasoning in the 15th International FLAIRS Conference,
Pensacola, Florida, May 2002.

[7] C.-M. Huang and C. Wang, “Synchronization for interac-
tive multimedia presentations.”IEEE Multimedia, pp. 44–61,
Oct. 1998.

[8] B. Rogge, J. Bekaert, and R. V. de Walle, “Timing issues in
multimedia formats: Review of the principles and compari-
son of existing formats,”IEEE Trans. Multimedia, vol. 6, pp.
910–924, Dec. 2004.

[9] M. Vazirgiannis, Y. Theodoridis, and T. Sellis, “Spatio-
temporal composition and indexing for large multimedia ap-
plications,”ACM/Springer-Verlag Multimedia Systems Jour-
nal, vol. 6, pp. 284–298, July 1998.

[10] J. B. Kruskal, “On the shortest spanning subtree of a graph
and the travelling salesman problem,”Proceedings of The
American Mathematical Society, vol. 7, pp. 48–50, 1956.

[11] R. E. Tarjan, “Efficiency of a good but not linear set union
algorithm,”Journal of the ACM, vol. 22, no. 2, pp. 215–225,
1975.

[12] T. H. Cormen, C. Leiserson, and R. L. Rivest,Introduction
to Algorithms. Cambridge, MA: MIT Press, 1990.

- 206 -- 206 -- 205 - - 205 - - 205 -0000000000- 205 - - 205 - - 206 - - 207 - - 207 - - 208 - - 209 - - 209 - - 209 - - 209 - - 209 - - 209 - - 209 - - 209 - - 209 - - 215 - - 215 -

