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Abstract

Time stamping is a technique used to prove the existence
of a digital document prior to a specific point in time. In
this paper, we define a trusted reliable distributed time
stamping scheme. This scheme is based on a network of
servers managed by administratively independent entities.
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1. Introduction

The advent of electronic commerce have made the secu-
rity of communication a major concern. Many governments
have chosen to communicate and conduct transactions with
citizens, businesses, and other agencies in a secure online
environment. The security requirements for electronic doc-
ument exchange are to ensure the integrity of official com-
munications, to protect constituent privacy, to authenticate
people and processes and possibly, to control sensitive in-
formation. Digital signatures help to provide ongoing as-
surance of authenticity, data integrity, confidentiality and
non-repudiation.
Time-stamping techniques allow us to certify that an elec-
tronic document was created at a certain date. This certifi-
cation is mandatory for a lot of applications in various do-
mains like patent submissions, intellectual property or elec-

tronic commerce.
The first time-stamping protocol was presented during
Crypto ’90 by Haber and Stornetta. One year later, Be-
naloh and de Mare proposed a formal definition for a time-
stamping system based on a set of participants and three
protocols [3]. Since then, a lot of new schemes were pro-
posed and their security analysed [11],[5],[6],[12],[8].
Most of them use the concept of trusted Time-Stamping Au-
thority (TSA) which is supposed to be able to securely time-
stamp an electronic document.
However, it may be difficult to build a third party server that
can be trusted. Indeed a server may be corrupted or victim
of denial of service attacks. In fact, we claim that time-
stamping schemes relying on a unique third party server,
cannot be trusted. Therefore our objective in this paper is to
propose a time-stamping scheme using a multiserver archi-
tecture.
Our protocol can be shortly described as follows: The pro-
tocol uses n third party servers. For each time-stamping
request, k servers among the n servers are randomly chosen
to process the request. These k servers are said to be the
active servers.
The security of our protocol depends on the number n of
servers and on the number k of active servers.
The paper is organized as follows. Section 2 briefly analy-
ses the weaknesses of existing protocols. In Section 3, we
give the required properties of our model. In Section 4, we
analyse the ”k among n” scheme: among the n servers of
the system, only k are chosen at random to handle a given
time-stamping request. Our time-stamping scheme is pre-
sented in section 5 and finally we propose a new random
generator to obtain k servers among n.
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2. Existing protocols and their weaknesses

Most of the existing systems rely on a centralized server
model that has to be trusted. For making the server trust-
worthy and preventing it from forging fake time-stamping
tokens, the method generally used is to link the tokens in a
chronological chain (see for example [7]). Periodically, a
token is published on an unalterable and widely witnessed
media like a newspaper. This scheme offers the following
advantages:

• The publication provides us with an absolute time.

• After a token has been published at time t, the server
cannot forge a fake time-stamping token former to time
t.

• Since tokens are linked in a chronological chain, we
can chronologically order the requests submitted be-
tween two publications.

However, this scheme has the following drawbacks:

• The publication step is costly and not convenient.

• Before the next publication, the server can tamper the
tokens which have been issued since the last publica-
tion.

• The entire chronological chain must be stored for ver-
ification. In order to reduce the amount of information
to be stored, most of the protocols use a binary tree
structure also called Merkle Tree [13]. This method
allows us to reduce to a logarithmic factor the amount
of information to be stored. However, protocols using
linking informations are not always accurate and ef-
ficient. This is trivially the case when the number of
time-stamped documents is very small while the fre-
quency of publication is very low (typically a week).
In that case, the accuracy of the time-stamp may not
satisfy the client. Notice also that a scheme using a
binary tree is not efficient when the number of docu-
ments is not close to a power of 2.

• Finally, centralized systems are very vulnerable to De-
nial of Service attacks.

3. Design requirements

Our aim is to design a multi-server time-stamping system
which has to meet the following requirements:

1. being independent from any administrative entity (like
a country, a multinational company,...);

2. being resistant against a Distributed Denial of Service
(DDoS);

3. being resistant against material failures;

4. being robust against an attack involving less than n/3

servers. It is known that any protocol can be made
provably secure (without any cryptographic assump-
tions) if and only if less than one third of the involved
parties are corrupted;

5. being able to work without ever trusting a particular
componant of the system;

6. being able to deliver an absolute time with an a priori
fixed error of interval time ∆t;

7. being able to prove the datation, from the knowledge
of the only time-stamp;

8. having a robust, simple and efficient verification pro-
tocol.

4. k among n scheme

In this section, we discuss the security of a general
scheme lying on a distributed network of n servers where
only k servers are involved in the calculation of a particular
time-stamp. In the next section, we present our distributed
scheme which does not have the security flaws of the
general scheme presented in this section.
The k servers are the active servers. They are randomly
chosen. The two values n and k depend on the required
security level.
The complete time-stamp, used to verify and to prove
the datation, is built from the k time-stamping fragments
delivered by the active servers. The number of active
servers is defined in order to maintain the required security
level as well as to minimize the traffic inside the network.
The model has n servers. Among them, f are supposed
to be failed (FS). Among these f servers, we assume that
fm servers are in Malicious Collusion (MC). Their aim is
to create time-stamps with the same incorrect time. Each
of the other fe = f − fm servers independently delivers a
fake time-stamp without colluding.
For a given document, active servers are randomly chosen
in order to reduce the probability of DDoS: the attacker
must attack the whole n servers (n >> k) to be sure to
succeed. Following Requirement 4 , we assume that the
number f of failed servers is bounded by n/3.
Let us now focus on a configuration where k servers
time-stamp a given document. Each of these servers issues
a time-stamping fragment and a vote allows them to obtain
a certified complete time-stamp: a complete time-stamp
is certified when more than k/2 servers propose the same
date t. Of course, two servers may correctly time-stamp the
document with two different but very close values. There
exist many solutions to solve the problem of determining
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t from a cloud of values. We may assume that two values
represent the same date if they belong to a fixed range ∆t.
Another solution is to ask the client to time-stamp its doc-
ument locally and submit this time-stamp for acceptance
to the distributed system. These methods do not affect the
security analysis of the scheme.
Let us now analyse the probability that an attack succeed,
assuming that the servers are chosen in a uniform way. The
various parameters of the general scheme are abreviated
and given Table 1.

FS failed servers
MC failed servers which are in malicious collusion
n number of available servers
k number of active servers
f total number of failed servers
fm number of MC servers
fe number of failed non MC servers (f − fm)
d number of active failed non MC servers

Table 1. Parameters of the configuration

A denial of service may occur as soon as more than k/2

active servers are FS.
The probality that at least k/2 active serveurs are FS is

P (FS ≥ k/2) =
1(
n
k

) ∑
k/2≤u≤f

(
f

u

)(
n − f

k − u

)
.

The following table gives examples of probabilities depend-
ing on different numerical values:

n k f P (FS ≥ k/2)

36 18 (k ≥ n/2) 12 3.7 10
−2

36 12 (k < n/2) 12 1.26 10
−1

However, it may also be possible that more than k/2 active
servers are in malicious collusion. In this case, fm > k/2

and these active servers may contribute to forge a certified
time-stamp.

The probability that exactly u active servers are in ma-
licious collusion while d servers are active FS without col-
luding is

P (u, d) :=

(
fm

u

)(
fe

d

)(
n−f

k−u−d

)
(
n
k

) .

Figure 1 represents the continuous variation (by using
the Gamma function instead of the factorial) of P (u, d),
(0 ≤ u ≤ fm) for n = 36, k = 12 f = fm = 12

(d = 0). We notice that the probability is maximal, equals
to the value 0.3, for u = 4. In fact, a collusion attact suc-
ceeds only for u > k/2 = 6, and in this case, we have
P (6, 0) = 0.099, the other probabilities P (u, 0) for k/2 <

0

0.05

0.1

0.15

0.2

0.25

P(u,0)

1 2 3 4 5 6 7 8 9 10 11 12

u

Figure 1. P (u, d) for n = 36, k = 12 f = fm = 12

(d = 0)

u ≤ fm being decreasing and small (P (7, 0) = 0.026,
P (8, 0) = 0.004,. . . ).

The following table gives examples of probabilities
P (k/2, d) depending on different numerical values of pa-
rameters:

n k f fm d P
36 18 (k ≥ n/2) 12 10 0 1.4 10

−3

36 18 12 10 2 3.8 10
−4

36 18 10 10 0 3.4 10
−3

36 12 (k < n/2) 12 7 0 7.5 10
−4

36 12 12 7 2 5.9 10
−4

36 12 12 12 0 0.99
36 12 7 7 0 2.6 10

−3

In this table, the worst probability is close to 1/10 and is
reached when k = f = fm = 12.

This scheme does not provide a satisfactory security in a
context of denial of service attack. Moreover, considering
the worst configuration, an attacker colluding with the MC
servers could successfully backdate a document after a rel-
atively small number of requests (about 10), without being
discovered. This is due to the diffusion property of hash
functions: a modification of one bit in the document leads
to very different hashes. Therefore, the attacker may submit
several times (almost) the same document until his request
is processed by the MC servers.

5. A time-stamping scheme

In this section, we propose a time-stamping scheme
which is not vulnerable to the attacks presented previ-
ously. It is composed of internal time-stamping boxes and
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n servers managed by many independent entities. The idea
of using distributed system to archive and sign documents
has already been studied in [10]. Distributed time-stamping
systems have also been studied, for example in [3] and [7].
However, none of these (rare) studies were able to design a
secure and efficient system. In [Tak99], a scheme using dis-
tributed signing servers is proposed. However, this solution
does not take into account the problem of denial of service.
Here, we aim to present a secure and reliable distributed
scheme to time-stamp documents. The main parties in-
volved in the scheme are the following:

• The client needs to time-stamp some documents.

• The box is given to each client. Depending on the
required security level, it can either locally time-stamp
a document or randomly determine k active servers for
a distributed time-stamping.

• The network of servers builds a time-stamp for each
document, using time-stamping protocol S.

• The replicated database serves as a publication me-
dia. Each server of the network records the time-
stamps of all the clients. Therefore each server holds
an entire copy of the time-stamp database.

• The verifier runs verification protocol V in order to
check the correctness of the time-stamp of a given doc-
ument.

Next paragraph describes in details this scheme.

5.1. The time-stamping scheme

Each client c has a calculation box B to which she sub-
mits the document D to time-stamp. Two levels of security
are provided. The time-stamping can either be performed
locally by the box thanks to classical protocol (level 0), or
by the distributed system of n servers (level 1). The box

1. calculates the hashed value of D, denoted h(D);

2. level 0 : locally time-stamps the document; end of the
protocol.
level 1 : determines randomly the k active servers;

3. signs the hash on behalf of the client c to form the re-
quest r := (h(D))c;

4. sends the request r to the k servers and waits for an
acknowledgment from each of them.

When level 1 is chosen, the document D is time-stamped
in accordance with a scheme which can be described in
the following way. Time is discretized in rounds of length
∆t. Servers and clients are synchronized regularly and we

do not take into account possible network malfunctions.
Each round is identified by an absolute date. For example,
a round can be identified by: January 1

st 2005 at 9.05am.
During a round t, each server receives a number of requests
which is approximately the same if this number is large
enough, since active servers are chosen randomly.
Suppose that the server Si receives pi requests. Let TSi

denote the array formed by the p i requests during the
round identified by t. At the beginning of the next round
(identified by t + 1), the server Si signs the concatenation
of t with TSi to obtain CSi,t. This is the stamp of the server
Si for the round t. Define CSi,t := (TSi ||t)Si . This stamp
is then broadcasted to every node in the network. Hence,
each server knows the list of all the distinct x requests
r1, . . . , rx, which have been submited during round t.

At the beginning of the next round (identified by t + 2),
the server Si calculates the global time-stamp of the round
t, CGt and records it in its database. CGt serves as a pub-
lished value and is defined using one way accumulator func-
tions that we have to define first.
Let Λ and E be two sets and define a family of maps

Ty : E → E

x �→ Ty(x)

with y ∈ Λ, and so called dual maps

xT : Λ → E

y �→ xT (y).

We assume that

i) xT is a one way function;

ii) for all a and b in Λ, Ta ◦ Tb = Tb ◦ Ta.

The map F : E × Λ → E defined as F (x, y) := Ty(x) is
an accumulator function in the sense of [4]. We denote by
Tab the composition Ta ◦ Tb.
The global time-stamp CGt of the round t is defined by

CGt := h(Tρ(t)),

where ρ := r1 . . . rν . For each of its clients in the round t,
the server calculates and signs the client time-stamp, which
is composed by the following values:

r, t, CGt, CGt,r := Tρr(t)

where r is the request of the client to whom the stamp is to
be sent, t is the round identifier, CGt is the global stamp
and ρr := r1 . . . rr−1rr+1 . . . rν . Hence, CGt,r is the ac-
cumulation of all the requests but r.

For a given document, each box receives k stamps. If
all the requests are received by the server during round t,
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then all the k stamps are the same. However, it may be
possible that some servers receive the request during round
t while some others receive it during the round t + 1. This
situation does not constitute a problem. Indeed, the proof
that the document has been time-stamped during round t
can be done as long as at least one client time-stamp has
been created.

Note that the value ∆t has to be carefully chosen, taking
into account different parameters like the properties of the
network or the method of synchronization which may be
time consuming.

5.2. Verification scheme

Server databases are to be consulted by verifiers. Each
database record consists of the values CGt, r, and t.
The verification of the time-stamp is as follows:

1. The request r has been involved in the construction of
the global time-stamp if

CGt = h(Tρr ◦ Tr(t)).

2. If required, the verifier can check that CG t is the pub-
lished value corresponding to the round t.

5.3. Robustness of the scheme

Attacks can be arranged into two categories:

• Attacks performed on existing time-stamps.

• Attacks performed during the construction of time-
stamps.

The first type of attack consists in modifying the stamp
while keeping its provability property. The success of
such attacks depends on the robustness of the cryptographic
functions that the system uses. The choice of the crypto-
graphic functions is essential since time-stamps are to be
valid for a long time (a few years).
Let us now study the robustness of our scheme against at-
tacks of the second category. The number of failed servers
being less than n/3, an audit is always able to detect either
an error or an attack.
Backdating is impossible since the time-stamp would not be
provable.
Postdating (which can be seen as a form of denial of ser-
vice) is possible. It requires that the k active servers, in
malicious collusion, wait during λ rounds before handling
the request. The probability of such an attack is not negli-
gible. It is equal to Pn,k :=

(
n/3
k

)
/
(
n
k

)
. With the following

parameters: n = 24, k = 5, we obtain a probability of
P24,5 = 1.3 10

−3. In order to reduce the consequence of

Attack Possibility Detection Probability Error
Antidating NO − − −
Postdating YES YES <

�
n/3
k

�
/
�

n
k

�
+∆t

DDoS YES YES <
�

n/3
k

�
/
�

n
k

�
+∆t

Table 2. Robustness of the scheme

this attack, the client is requested to send again the time-
stamping request to k new active servers when no acknowl-
edgement has been received after a time of ∆t. In this case,
time-stamping is performed after a delay of ∆t and the pre-
cision of the time-stamp is reduced. This solution also holds
for a pure DoS attack. This study is resumed in Table 1,
where the last column represents, in case of successful at-
tack, the difference between the correct date and the date of
the time-stamp.

Our protocol makes use of three types of cryptographic
functions. Hash functions, signatures, and accumulators.
Accumulator functions may be a simple modular exponen-
tiation. In this case, we have Tr(x) := xr

mod s, where
the parameter s is an RSA modulus, and can be defined ac-
cording to the recommandations of [4]. In particular, we
must have (r, φ(s)) = 1. Notice that xT : r �→ xr

mod s
plays the role of a one way function since finding r is find-
ing the discrete logarithm of xT (r) = xr

mod s which is
known as a hard problem. Moreover, the property ii) also
holds since xab

= xba
mod s. With the previous nota-

tion, CGt := h(t
�ν

j=1 rj
mod s) and CGt,r := t

�ν
j=1 rj/r

mod s. Hence the equation used for verification is now
CGt = h((CGt,r)

r
mod s).

However, public key algorithms of RSA type being not ef-
ficient, accumulators based on this technique may not rep-
resent a viable solution. We recommand to use new algo-
rithms like XTR (Efficient Compact Subgroup Trace Rep-
resentation) or algorithms based on elliptic curves. In the
case of elliptic curves, we use an additive group instead of
a multiplicative group. We have Tr(t) := r.t, where t is a
point of the curve and r an integer. In this case, accumu-
lators and signatures may use common parameters (same
curve, same field, ...) in order to simplify the scheme. This
study, furthermore very interesting, is outside the scope of
this paper.

6. Random generators

Our scheme requests a generator to randomly select k
distinct elements from a set E of n elements. Hence, we
seek for a uniform generator, cryptographically secure and
which satisfies some requirements particularly on the time
of execution but also on the memory space.
There exist severals generating algorithms. The simplest
way to build such a uniform random generator is to select
an element a1 ∈ E and then select an new element, distinct
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from the preceding one, and repeat the process until we get
k elements. We consider two classical cases:

• Each selected element is dropped from the set E. Con-
sequently, we have to build k random generators of q
symbols, with n − k + 1 ≤ q ≤ n. This leads to a
possible bias if we use a binary source generator.

• Selected elements are kept in the set. In this case, only
one generator is used and the problem of possible bias
concerns just this generator. However, it may take a
lot of draws before we obtain k elements since in our
model, k is not very small compare to n. Therefore, the
probability to draw an already selected element is not
negligible. Recall that the average number of draws is
approximately n log n (see for example [9]).

One of the most famous generating algorithm is probably
RANKSB of H. Wilf (see [14] for details). Its execution
time, in average, is O(k), when k << n. But in our case, it
will be around O(n) and execution time is not constant.

Now, we propose an algorithm based on the notion of
random walks on a finite group G. We refer the interested
reader to the basic surveys of N. Sloane [15] and D. Al-
dous [1]. Let Q(m) be the distribution on G determined by
the issue of the walk after m steps starting from the identity
element. The initial distribution is Q (that is, the probabil-
ity to go from g to h in the group is Q(g−1h)). Let U be
the uniform distribution on G. When Q(m0) > cU for an
integer m0 and a constant c > 0 (mixing case), the total
variation distance d(m) := maxA⊂G |Q(m)

(A) − U(A)|
between Q(m) and U tends to 0 at an exponential rate. But
this majoration is generally not numerically useful. Con-
sider the case where G is the permutation group of E.
We choose the walk represented by the mixing of a deck
of n cards by the following method: insert equally likely
the topmost card within the deck. From [2] (Theorem 1),
d(n log n + γn) ≤ e−γ for all γ > 0 and n ≥ 2. Let us
apply this result for n = 24. An explicit version of Stirling
formula leads to the concrete bound

d(1393 + 17s) ≤ 1

2s24!

for any integer S ≥ 0. This method does not provide us
with a uniform generator, but the bias, represented here
by the quantity d(m), can be made negligible by using
enough computing power. Moreover, the fluctuation of per-
formances of the binary source generator can be corrected
by increasing the number of iterations.

7. Conclusion

Our scheme represents an alternative solution to classical
monoserver schemes. The level of security and reliability

can be achieved by carefully adjusting the k and n parame-
ters. The distributed publication allows us to avoid a costly
publication in a (not electronic) newspaper.

This scheme also offers the possibility to time-stamp
documents in an off-line mode. In that case, the system
may locally adopt a classical linking scheme and the publi-
cation would be done by the n servers when on-line. It may
find applications where clients are not to be continuously
connected to the system like, for example, in spontaneous
networks.

We think that multiserver schemes represent the right
way to obtain efficient solutions in the domain of time
stamping. Moreover, we think for further work that the use
of modern cryptographic tools, like for example threshold
cryptography, may help to simplify protocols and avoid in-
teractions between servers.
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