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impalpable malignant MCs within the breast can
Abstract improve survival rate of breast cancer patients.

Computer-aided-diagnosis (CAD) systems can be
very useful as « second opinion» in case of
mammography screening programs where large
volumes of mammograms are produced, of which only
a few have abnormalities to be spotted out.

We propose a full CAD tool for mammography. It
comprises two modules. The first module detects
microcalcification clusters (MCCs) present on the
mammograms. It is based on a two-step algorithm. The
first step segments the images. In the second step,
candidates which are not true MCs are discarded.
Only MCs belonging to a cluster are retained. The
second module classifies the detected MCCs into
benign and malignant types. Testing both modules, the
first detected 85.65% of individual MCs and 100% of
the MCCs present on the mammograms and the second
yielded a sensitivity of 100%, a specificity of 75% and
good classification rate of 85.29% .
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microcalcification cluster, neural network,
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1. Introduction

Mammography is nowadays a widespread

technique for early detection of breast cancer.
Microcalcifications clusters (MCCs) are generally an
early sign of breast cancer. Microcalcifications (MCs)
are tiny granular deposits of calcium which can be seen
on a mammogram. Detecting and classifying
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Computer-aided diagnostic systems which would assist
radiologists detecting and classifying such MCs are
therefore very useful. A number of works in the
literature have been devoted to developing such
systems. An excellent review of the subject was
provided by Cheng et al.[1]. Each approach has its own
strengths and weaknesses. As in our paper two parts
generally emerge: the first deals with detection and the
second with classification of MCs.

The detection of the MCs’ part of the system has
been attempted by many authors. For example,
methods based on wavelet and other multi-scale
approaches [2], fuzzy logic [3], neural networks [4],
texture analysis [5], statistical approaches [6] or
genetic algorithm [7] have been suggested. All these
methods can be roughly divided into two approaches.
In the first approach, there are often a pre-processing
(signal to noise enhancement) and a segmentation step.
Both are designed so that as many MCs as possible are
detected without taking into account signals which lead
to false positives (FPs). Some authors of whom
Strickland et al. [8] are examples, used this approach.
In the second approach, the eventual pre-processing
step and the MC segmentation are developed to detect
as many MCs as possible while minimizing FPs. Pre-
processing and detection are carried out either
sequentially or simultaneously. Global or local
tresholding techniques are then used to binarized the
image. Chan et al. [9] are some of the authors who
used this approach.

In order to detect the MCs, we developed an
algorithm that combined the advantages of the two



approaches described above. The segmentation step
which is designed to find as many MCs as possible
while minimizing FPs (approach 2) is followed by a
selection step (approach 1) eliminating unavoidable
FPs from the segmentation. MCCs being more relevant
for diagnosis, we made sure that only MCs belonging
to clusters were kept. Sub-section II.1.1. gives more
details on that.

The classification system generally consists of 3
steps in the literature: computation of appropriate
features, selection of the most meaningful set of
features for the classification, feeding the features into
the classifier for malignant analysis of the lesions. The
literature offers two main methods of features’
selection: the genetic algorithm (GA) and step wise or
iterative method (IM). The classifiers play a major role
in the CAD system and four kinds of classifiers are
mostly used: artificial neural networks (ANN) ([10]),
k-nearest neighbour classifiers ([11]), Bayesian belief
networks ([12]), and binary decision tree [13]. An
analysis of results provided by different authors proves
that textural features seem to be the best choice for
feature sets [14] on one hand. On the other hand ANN,
on the average, gave better results than the three other
classifiers [1]. Finally, due to complexity of
implementation and time consumption of GAs, the IM
is generally preferable.

We therefore proposed a classification module
using a set of textural features derived from the MCCs.
Using the IM, the best set of feature from the thirteen
previously computed was selected. And finally, using a
back propagation ANN made of an input layer, one
hidden layer and an output layer, the detected MCCs
were classified.

The main advantages and differences of the
proposed system as compared to those present in the
literature are on one hand the fact that we developed a
novel detection algorithm efficiently combining the
two approaches of MCs detection techniques . On the
other hand, we used an adapted IM for selection of
features and some textural features hitherto unused for
MCC:s classification. In the following section, details
of the algorithms used in each module are given.

2. Details of the algorithms
2.1. Detection module

2.1.1. Image segmentation. The principle of the
detection algorithm is given in figure 1. The principle
of our segmentation algorithm is identical to that of
Chan et al [9], in the sense that the original image
(OI(x,y)) is smoothed (SI(x,y)) and subtracted from an
image in which the contrast has been enhanced
(El(x,y)). In Chan’s algorithm, linear filters called
“matched filters” were used to enhance the contrast
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between the calcifications and the mammary tissues
while either median filters or “contrast reversal filters”
allowed them to smooth the original images. Contrast
enhancement was obtained in our case through an
algorithm proposed by Gonzales and Wintz [15] which
is described below.

Contrast-enhancement
> of MC background ]
Original El(x,y)
Image »
Ol (x,y) MC smoothing
y  SIxY)
I
Image Difference Image
Binarizing [«
BI(x,y) EI(x,y)-SI(x,y)=DI(X,y)

v

Image Labelling
LI(x,y)

Y

MC selection

v

MCCs detected

Figure 1. Principle of the detection algorithm

Let us consider a rectangular neighbourhood (of
width w and height /) centred on a pixel of coordinates
(ij) in OIl(ij). The mean grey value and the standard

deviation in this neighbourhood are 1, ;and O, ;

respectively. The value of the pixel of coordinates (i,j)
of the contrast enhanced-image is :

EI, j) =k, =2

scale

(O](i’j)_n_/li,j)-i_n_/zi,j (1)

L]

m, and k

cale ar€ respectively the mean of grey-level
value computed with all the pixels of OI(x,y) and a
scaling factor introduced to keep the resulting grey-

values in a given range.
The term (OI(i, j)—m, ;) is large if OI(i,j) belongs

to a MC and is on the average smaller if OI(ij)
corresponds to mammary tissue. Moreover, if the
texture of the mammary tissue is very pronounced, the

My,

My . . .
term is small (O ; being large). Since
i,J
modulates (OI (i, j))—m, ;), the latter difference

i,J

decreases if all considered pixels are on mammary
tissues. This algorithm therefore amplifies the strong



grey-level slopes which generally correspond to MCs
while enhancement of mammary tissue is limited.

We used gaussian filters to smooth the original
image. By subtracting pixelwise the smoothed-image
from the contrast-enhanced image, the background is
strongly attenuated and the MCs more accentuated.
DI, j)= EI(, j)=SI(, ]) (2)

The difference-image DI(i,j) obtained here above
is binarized using a local adaptive tresholding
algorithm [9]. Its principle is the following. For a
rectangular window centred on a pixel of coordinates
(ij) and of width wy,;, and height %,;, , the mean grey-

—bi .. bij
value m; ';’ and the standard deviation O lf are

computed. The pixel (i,j) in the resulting image is
(Bl(ij) | | |
BI(i,j)=1 it BI™(i,j)>m" + ko

N i
BI(i, j)=0 otherwise (3)
k is a pre-selected integer and O'ilj Z’ is the standard
deviation computed using the grey-value of the pixel
coordinates and n_’lilj ?I the mean grey-level value in the

window. In this paper, wy;, and 4;;, were chosen equal
to 71 since this size of the window is large enough to
include “a representative mammary texture”. The
binarized-image was then labelled using a classical
eight neighbourhood algorithm and yielded LI(i,j).

2.1.2.  Microcalcification and  cluster  of
microcalcification selection. Each region LI(x,y) with
the same label represents a potential MC. In order to
distinguish region which are not MCs (false positives)
from those which are truly MCs (true positives), a set
of moment-based geometrical features were computed.
They have been listed below (a-j).

a. Central moment of order p+q : cm,,

em =33 -T 0 -T) Sx,y) @

j=0 i=0

b. Volume in terms of grey-level
v=cm (&)

0,0
c. Elliptical disc (of same volume and second order
moment with the MC) and with orientation 6 major
axis ga and small axis pa

1, 2cm,
6 =—tan -
2 cm,  —cm,
cm, +cm,, t \/(cmZ.0 —cm )+ (2em |V
(ga, pa) =, |2
cmO,D
©)

d. Radius of gire

CW!L0 + cm“
rg=—— ™)
cm

L1

e. Grey-level concentricity

cm, +cm |+ \/(cml0 —cm )+ (2em, f
c= 8
cm, +om | — \/(sz.o —cm )+ (2em ) ®
- Area of the MC
a = number of pixels above the threshold
g. Perimeter of the MC
p = number of pixels on the border of the MC
h. Circularity factor
of = P ©
4ra
i. Grey-level slopes around the MC
S; . i" slope computed with grey-levels of two
neighbouring pixels located on each side of the border
of the MC
J. Mean grey-level slope around the MC border

§:iisr (10)
P

Typical values for MCs for each of the features were
found empirically. From these values, a simple multi-
threshold algorithm was used to discard the FPs. A
further selection procedure was carried out — based on
the fact that a cluster of MCs is defined by a minimal
density of 5 MCs/cm® — to only retain MCs which
belonged to a cluster.

2.2. Classification module

The usefulness of co-occurrence matrices texture
measure in differentiating malignant and benign breast
tissues was demonstrated by analysis  of
mammographic MCs [16]. We therefore used textural
features extracted from our ROIs (MCCs) as
information fed into our classifier. The features used
are described in the next sub-section.

2.2.1. Feature computation. The co-occurrence
matrix element, MATCOOC(i,j) is the joint probability
of the occurrence of grey-levels i and j for pixel pairs
which are separated by a distance d and at a direction
6. From work by Chan et al. [16], it is known that there
is no significant dependence of the discriminatory
power of the texture features on the direction of the
pixel pairs for mammographic textures on one hand.
We therefore used the direction € = 0°. On the other
hand, in order to obtain fine details of the texture, we
used d = 4. The co-occurrence matrix was computed
on the region of the MCC after which the following 13
texture features were extracted [15]: Correlation ,
entropy , energy, Inertia, Inverse difference moment,
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Sum average, Sum entropy, Sum variance, Difference
entropy, Variance, Inverse difference, Information of
correlation 1, Information of correlation 2, These
features were chosen on the basis of their
discriminatory power from literature analysis [16].

2.2.2. Classifiers. Of the diverse classifiers used in the
literature, back-propagation ANN seemed to give the
best results [1]. An ANN is a parallel, distributed
information processing structure consisting of elements
interconnected by directional connections. A neural
element carries out local operations. ANN can
efficiently learn non-linear mappings through examples
contained in a training set, and conduct complex
decision making. The back-propagation is probably
one of the most well research training algorithms. Its
main strength resides in back-propagation of the errors
from the output, in order to minimize them. We used a
very simple back-propagation ANN with an input
layer, one hidden layer and an output layer.

2.2.3. Feature selection. We used an iterative method
to select the best set of features for the classification of
the MCCs. We started with a pool consisting of the 13
features listed here above and carried out the
classification with it. The rate of good classification
(GC) was noted. Then the influence of each of the
feature was evaluated by removing each one of them at
its own time and carrying out the classification with the
rest. The best set of 12 features was retained. On this
set, the same procedure of evaluating the influence of
each feature was done and the best set of 11 features
retained. We continued this process down to the best
set of 3 features after which the classifier gave
erroneous results. The best set out of the 10 sets
retained was the one which gave the best rate of GC.
The rate GC must be understood as the percentage of
diagnostic decision (given by the CAD system) that
proved to be correct when compared with the biopsy-
proven or histological-proven results.

3. Results

3.1. Database

In order to test our two modules, we used a
database of 66 images. These contained a total of 59
MCCs and 683 MCs. The images, of size 512 x 512
pixels, encoded on 16 bits and of resolution
98um/pixel were obtained from the cancerology centre
“Centre Alexis Vautrin (CAV)”, Nancy, France.

3.2. Results of the detection module

Of the sixty-six images of the data set, eighteen were
chosen to study the efficiency of the detection
algorithm according to parameters of the contrast
enhancement algorithm (window of width w,,; and
height 4.,,) and of the smoothing filter (standard
deviation g, of the Gaussian function).

The trade-off between true positive (TP) cluster
rate and false positive (FP) clusters per image is
usually represented by free-response receiver operating
characteristics (FROC). Such FROC-curves were
plotted for several sets of W e and Oy,
parameters. These curves were built by varying the
number of standard deviation (k = 5, 4, 3, 2.5 and 2.1)
in formula (3) (figure 2).

1 ‘__.1;175' Ii —
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T
A
|

3 (11 by 11 kernel)
1 (7 by 7 kernel)
5 (15 by 15 kernel)

Mean TP fraction

o
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W
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FP per image
(a) Detection efficiency according to the

caussian filter size
gaussian filter si

Mean TP fraction

O 5 by 5 contrast enhancement kernel

or G

! © 7 by 7 conwast enhancement kernei
: = 3 by 3 contrast énhancement kernel

i 0,05 0.1 0.167 1 10

FP per image
(b) Detection efficiency according to the
contrast-enhancement filter size.

Figure 2. FROC-curves for the detection module
of our CAD system

As can be seen, the best results were obtained with
the triplet (Weun=hen=5 and  ©;,,=3) only
0.16FP/image were detected with these parameters.
The detection algorithm was also applied to 48
remaining images of the database. All the clusters
present were detected and we registered a total of SFP,
which is a rate of 0.11 FP/image. Finally, the number
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of MCCs present, the success rate of the detection
module was 100% with 0.121 FP/image. Considering
individual MCs, the success rate was 85.65% with 2.50
FP/image. The algorithm was therefore validated by
the FROC-curves above (Figure 2). For most
algorithms of the literature, the evaluation is given in
terms of MCC. Some of them ([2], [3], [5], [17]) have
a detection rate around 100% like ours but exhibits a
FP rate of at least 0,7 FP cluster /image which is larger
than our FP rate. In the recent literature, Karssemeijer
et al., [6] have evaluated their algorithms in terms of
individual MCs. They obtained a FP rate of
2,97MC/image (which is larger than the 2,5FP/image
yielded by our algorithm).

3.3. Result of the classification module
Thirty-four images for which histological-proven
results were available were used to test this module.

Their characteristics were fed into the ANN.

Table 1. Performance of our classifier

Type of
image
(according
to biopsy or
histology) Cancerous
Classificatio Non-
n results by | Cancer |canc | Non- Canc
the CAD | ous €rous | cancerous | erous
system (TP) (FN) | (TN) (FP)

Non-cancerous | Total

Number of
images  as
classified by
the CAD

system 14 0 15 5 34

100% 75%
(sensiti (specificit
Percentages | vity) 0% |y 25%

Good
classification
rate 85,29%

The best GC rate was obtained for the following
set of nine features: correlation, entropy, energy, sum
average, sum entropy, difference entropy, variance,
inverse difference, information measure of correlation
1. The results are recapitulated in table 1.

A decision for classification result can be one of
four possible categories: true positive (TP), true
negative (TN), false positive (FP), false negative (FN).
FN and FP are two kinds of errors. A FN error implies
that a true cancer was classified non-cancerous region
(benign) and a FP error occurs when a non-cancerous
region has been classified cancerous. A TP decision is
a correct judgement of an actual cancer, and a TN

decision means a non-cancerous image was correctly
labelled. These lead to :

sensitivity = TP/(TP+FN) (11)

specificity = TN/(TN+FP) (12)

From (11) and (12), table 1 therefore exhibits a
sensitivity of 100% and a specificity of 75%. The
overall GC rate is 85.29%. These results prove that no
cancer is missed, which is good for patient survival
rate. On the other hand a 75% rate specificity means
that a quarter of patients run the risk of undergoing
unnecessary biopsies. This may be improved by
injecting some a priori knowledge during the building
of ANN.

Some authors (Chan et al [16]) proposed systems
with very high sensitivities like ours. But they are
generally followed, like in our case, by low
specificities which is a dilemma in the global
evaluation of the system. For a fixed discrimination,
the sensitivity and specificity of a diagnostic system
will depend on the particular confidence threshold that
the observer or the computer diagnostic uses to
partition continuously distributed perception of
evidence into categorical decision.

o
®

sensitivity
o
o

04 1

0,2 4

0 0,5 1 1,5
1-specificity

Figure 3. ROC-curve for the classification module
of the CAD system

Sensitivity and specificity change when the
confidence threshold is changed. A way to solve the
problem is to plot Receiver Operating Characteristics
(ROC)-curves, which represent the trade offs between
sensitivity and specificity and therefore describe the
inherent discrimination capacity of a system. A non
parametric estimation of the ROC-curve from our
results yielded the curve in figure 3.

The area under the ROC curve (4z) is an important
criterion for evaluating diagnostic performance. The
area under the ROC-curve was found equal to 0,89. It
is in the order of the highest values in the literature.
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4. Conclusion

In this paper a Computer-Aided-Diagnosis system
for early detection of breast cancer was presented.
MCCs which are often early signs of breast cancer can
be detected and classified by this system. The detection
module of the system efficiently combined the two
main approaches of systems of the same kind in the
literature. The high sensitivity (100%) of the system
which means that all cancers are detected, is balanced
by a relatively low specificity (75%). The latter may
probably be improved by injecting some a priori
knowledge during ANN design. Overall, although the
system was tested with a small database, it provided an
Az = 0,89 which is a performance good enough to
suggest the trial of this system at a larger scale.
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