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Abstract

We present a family of ”normal” distributions over a ma-
trix group together with a simple method for estimating its
parameters. In particular the mean of a set of elements can
be calculated. The approach is applied to planar projective
homographies, showing that using priors defined in this way
improves object recognition.

1. Introduction and Outline

One reason to describe a distribution of homographies is
to introduce a meaningful prior for Bayesian image recog-
nition. Suppose we want to distinguish between N planar
objects. The input we are given is a picture of an object im-
aged from an unknown direction. Thus the image, D should
be obtained from the original by some homography φ. Let
M be the model, in other words, one of the objects, from
Bayes rule we get:

P (M, φ|D) =
P (D|M, φ)P (M, φ)

P (D)
=

=
P (D|M, φ)P (φ|M)P (M)

P (D)
(1)

Thus to be fully Bayesian, we need to know P (φ|M), that
is, a distribution on the group of the homographies of a
plane.

Many papers such as [13], [5], deal with means on
groups, although all of them are for subgroups of the group
of euclidean motions. In [3], [4] a method for putting a
distribution on a Lie group is described. The method is ap-
propriate, though, only when the group is compact (such as
SO(3), the group of rotations of the 3-D space) or abelian
(such as R

n, the group of translations) or direct products
of such groups. However, some models involve groups that
cannot be represented in such a way, in particular the views
of a planar object from different directions. These are mod-
eled with the group of plane homographies, that is, 3-by-3
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Figure 1. A planar object imaged from differ-
ent directions.

matrices where matrices differing only by scalar multipli-
cation represent the same homography. To get rid of this
ambiguity we normalize the matrices to have determinant
1. This group is usually denoted by SL3(R). Distributions
on such groups were treated in [11], but no method for es-
timating expectation and the parameters of the distribution
was described, and the absence of the covariance greatly di-
minishes the ability of the distribution to fit data. In this
paper we propose a parametric distribution on such groups,
together with simple methods for finding the parameters.

The main idea needed in order to define the distribution
is as in [3] for the orthogonal group, the geodesic distance
on the group. The geodesic distance is used in order to de-
fine a mapping from the group G to a linear space where
we estimate the parameters of the normal distribution. An-
other way to look at it is to say that we define an invariant
distribution on the group and learn its parameters.

The next Section shows the need to define the probabil-
ity using the group structure. In Section 3 the mathemat-
ical background needed is described. Section 4 describes
the actual algorithms for estimating the parameters of the
distribution fitted to given data. The paper finishes with a
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demonstration of the methods applied to object recognition.

2. Motivation

Intuitively, a “normal” distribution on G should have a
mean value µ and a covariance matrix Σ. In the case of the
usual normal distributions on R

n, we know that if a random
variable X is translated by t then the probability translates

X � N(µ, Σ) =⇒ (X + t) � N(µ + t, Σ).

We would like a similar property to hold for our distribu-
tions on G. For example, suppose that we have a planar ob-
ject and a distribution of camera positions above it (Fig 1).
If the distribution of the homographies from a set of images
I to Image 1 is N(µ, Σ), the distributions of the homogra-
phies from the set of images I to Image 2 is g ◦ N(µ, Σ),
where g is the homography between Image 1 and Image 2.
We would like the parameters to be invariant to the group
action, that is

h � N(µ, Σ) =⇒ (gh) � N(g ◦ µ, Σ).

One might try to define a distribution on the group G,
for example SL3(R) by treating it as a subset of R

9. There
are a few problems with this approach. First of all, SL3(R)
is an 8-dimensional manifold and not 9-dimensional. One
might take only 8 coefficients of the 3×3 matrix, and define
the distribution using those. But in this way the invariance
property doesn’t hold. The solution is to define the distribu-
tion using intrinsic features of the group G. We define the
distribution with a given mean µ by mapping a normal dis-
tribution on the tangent space at µ to the group itself, while
keeping the invariance properties.

In Figure 2 the advantage of our distribution is demon-
strated. A set of homographies between a planar object and
its image when the camera is randomly placed on a sphere
above the plane. The dashed line is the density of one of
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Figure 2. Distributions of two coefficients
of the homography matrices in usual matrix
representation (dashed line) and after trans-
formation (solid line). Kolmogorov-Smirnov
normality test of the different coefficients is
shown under each graph.

the coefficients of the usual matrix representation of a ho-
mography (as a 3-by-3 matrix normalized to have determi-
nant 1) and the solid line is the density of the correspond-
ing coefficient after our transformation was applied. It can
be seen that our distribution is more “normal” and informa-
tive. The distribution of the coefficients after transformation
is much closer to normal, as is demonstrated by the results
of Kolmogorov-Smirnov [7] tests of normality of the co-
efficients shown in Figure 2 (smaller numbers imply more
normality, the numbers were scaled).

3. Mathematical background

The tools used here come primely from Lie theory and
differential geometry. For more information on these sub-
jects the reader is referred to [14] or [8].

A Lie group G is a group which is also a smooth mani-
fold, such that multiplication and inversion are smooth. For
any point x on a smooth manifold one has the tangent space
to the manifold at x, denoted by Tx.

Many of the examples of Lie groups are matrix groups,
for example G = SLn(R), the set of all n-by-n matrices
with real entries and determinant 1. This set has a mani-
fold structure inherited from the natural manifold structure
of R

n2

, the set of all matrices. Every matrix in G has an
inverse in G, and as the determinant is multiplicative, the
product of two matrices in G is in G. Thus SLn(R) is a Lie
group.

As with any smooth manifold and any point on it, if we
have a Lie group G one has the tangent space to the identity
element eG which we will denote by g

1 . There exists a
map, called the exponential map, exp : g → G such that for
any v ∈ g and any two real numbers t, s, we have exp(tv +
sv) = exp(tv) exp(sv). Moreover, d

dt
exp(tv)|0 = v.

Let’s look again at G = SLn(R). The tangent space
to I (the identity matrix) is a subspace of the space of all
matrices. In this case, as with all matrix groups we get that
the exponent map is (hence the name) exp(X) = eX =
∑∞

k=0

Xk

k!

So what is g for SLn(R)? We should take all the ma-
trices X such that det(eX) = 1. As is known, det(eX) =
etr(X) thus the condition is that tr(X) = 0. We denote the
set of all n-by-n matrices with zero trace by sln(R).

As the exponential map isn’t onto and 1:1 in general, the
inverse map, log, can be defined only in a certain neighbor-
hood of the identity. In the case of matrix group, log(g) =
∑∞

k=1

−1
k

k
(g − I)k.

1The reason we pick a special name, g for the tangent space which we
could denote by Te is that this space, called the Lie algebra of G, plays
an important role in Lie theory, and proofs of some of following claims
use Lie algebra. We chose to omit the defi nition of Lie algebras and their
multiplication in order to keep this exposition as simple as possible.
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Next, we want to put a metric structure on our group G

which we will use to define the distribution. A general way
to define metrics on a manifold G (not neceserily a group)
is to assign to every point g ∈ G an inner product <, >g on
the tangent space Tg at g, enabling us to measure the length
of a tangent vector. We denote the norm on Tg derived from
<, >g by ‖ · ‖g.

‖v‖g =
√

< v, v >g

Now we can define length of a path γ : [a, b] → G as fol-
lows

L(γ) =

∫ b

a

‖γ(t)′‖γ(t)dt

when γ(t)′ is the derivative of γ(t). The distance d(g1, g2)
between two points is the infimum of the lengths of paths
between them, and a path where the infimum is achieved is
called a geodesic. While it is not true in general, in a generic
situation for every point g in G there is a unique geodesic
starting from g in every direction, giving us the exponential
map (not to be confused with the exponential map above,
although sometimes they coincide) expg : Tg → G such
that d(g, expg(v)) = ‖v‖g for every v in Tg. In what fol-
lows we denote the map expe, the Riemannian exponential
map from the tangent space at the identity element of G, by
expp.

For the family of distributions to be left-invariant, the
metric has to be left-invariant. Multiplication by g defines
a map Lg : G → G. Lg maps e to g, and thus maps Te

to Tg. It also carries the inner product from Te to Tg in the
following way: let L−1

g be the inverse map from Tg to Te.
Now the inner product defined by

< v, u >=< L−1

g v, L−1

g u >e v, u ∈ Tg

is Lg(<, >e). For the Riemannian structure to be invariant
we need to have Lg(<, >e) =<, >g. We conclude that an
invariant Riemannian structure on a group is determined by
an inner product on Te.

Let us demonstrate the principle with some examples.
For G=R

n, the identity element is 0. In this case we can take
<, >0 to be the standard scalar product. An action on the
left (this group is commutative, thus it doesn’t matter) by an
element g of R

n translates the whole group, so we get that
<, >g= Lg(<, >) is again the standard scalar product. The
length of a path now is the usual length in R

n, so geodesics
are straight lines. Thus the invariant metric we get on R

n is
the usual Euclidian metric.

The following discussion enables us to deal with the
special linear group SLn(R) and the orthogonal group
SOn(R). 2 We choose a certain inner product on g: 3

2This discussion is true in general for semi-simple Lie groups of which
these two are examples

3This inner product is invariant under orthogonal transformations:

< A, B >= Tr(ABT )

As we’ll see, the distribution we get from this definition co-
incides with that of [3] for the case G = SOn, the group of
orthogonal matrices. Additionally, we still obtain a closed
form for the geodesics (the shortest paths) in this metric. It
turns out that the Riemannian exponential map in this case
is [15]

expp(X) = e−XT

eX+XT

The map expp is onto, although not 1:1 so to define the
inverse map, logg we need to choose X with the smallest
‖X‖ such that expp(X) = M . For the case G = SOn(R),
the group of orthogonal matrices, we get g = son(R) which
is the n-by-n antisymmetric matrices with zero trace. It fol-
lows that for every X ∈ g we have XT = −X , yielding

expp(X) = e−XT

eX+XT

= eX

and respectivly, logg(g) = log(g), giving the same as in [3].
Now we make the step from metric to distributions. Recall
that the usual normal distribution in R

n with mean µ and
covariance Σ has density

φ(x) ∝ e−(x−µ)
T

Σ
−1

(x−µ)

When trying to mimic that distribution in the case of Lie
groups, we have a small technical complication, namely, to
define the covariance we need to look at points in g as vec-
tors, not matrices, by picking some basis v1, . . . , vm for g

and taking f to be the map from g to R
m giving the coef-

ficients according to that basis. This done, we define ”Lie-
normal” 4 distribution on G with mean µ ∈ G and covari-
ance Σ (a m-by-m matrix) as having the density

φ(g) ∝ e−f(logg(µ−1g))
T

Σ
−1f(logg(µ−1g))

and this family of distributions is left-invariant by construc-
tion.

4. Algorithms

The algorithms described in this Section follow the algo-
rithms of [1] differing in the substitution of expp and logg

in place of exp and log.
Our goal is to find a Lie-normal distribution on G that

fits the data. First we should estimate the expectation of

< OA, OB >= tr(OAB
T

O
T ) = tr(OT

OAB
T ) = tr(AB

T ) =
=< A, B >. This defi nition is also very natural in the setting of semi-
simple groups, see [15].

4Strictly speaking, we have no right to call these distributions normal
as a notion of truly, that is, fi tting the central limit theorem normal distri-
butions on groups exists [6], although, these distributions aren’t feasible
for computational purposes.
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the distribution, by finding the “mean” of the data. In this
Section we define the mean on a Lie group. The notion of
a center of mass on Riemannian manifold was intoduced
by Cartan, see [9], ch. 8 and [12] for further information.
Remember from the previous Section that the distance in G

is given by
d(g, h) = ‖logg(g−1h)‖

Thus the mean of g1, ...gn ∈ G is [9]

µ = argmin
h∈G

n
∑

1

d(gi, h)2 =

= arg min
h∈G

n
∑

1

‖logg(g−1

i h)‖2

The first order approximation to the mean is given by

µ̂ = expp(
1

n

n
∑

i=1

logg(gi))

The error in this approximation is larger when points are far
from the identity. Thus we left-multiply all points by µ̂−1

so that µ̂ is moved to identity. Now we compute the mean of
these residual points and combine this with µ̂ to get a new
approximation of the mean. This process is repeated until
the mean of the residuals is sufficiently near the identity.

Algorithm 1:
Input: g1, . . . , gn

Output: µ ∈ G, the mean
µ = g1

Repeat
∆gi = µ−1gi

∆µ = expp( 1

n

∑n

i=1
logg(∆gi))

µ = µ∆µ

Until ‖logg(∆µ)‖ < ε

As this is a gradient decent method, it will converge to
a local minima. The uniqueness cannot be guaranteed in
general, for example there is no unique mean between the
north and the south pole of a sphere. In the Appendix we
show that for close enough homographies the computation
converges to the global minima.

Now we want to find the covariance matrix. First we
find the mean µ of the data using the algorithm above, then
map the data to the tangent space of µ and finally com-
pute the covariance matrix. Pick any basis {v1, v2, . . . , vm}
for g and let f : g → R

m be a map that takes X ∈
g to its representation according to the basis as in the
previous Section. Now we can present the algorithm:

Algorithm 2:
Input: g1, . . . , gn ∈ G

Output: mean µ and covariance matrix Σ
µ = mean of {gi}
xi = logg(µ−1gi)
Σkl = 1

n

∑n
i=1

fk(xi)fl(xi)

Any basis for g will do. For G = SLn(R) we can take,
for example, the following basis:

(

0 1 0

0 0 0

0 0 0

)

,
(

0 0 1

0 0 0

0 0 0

)

,
(

0 0 0

1 0 0

0 0 0

)

,
(

1 0 0

0 −1 0

0 0 0

)

(

0 0 0

0 0 0

1 0 0

)

,
(

0 0 0

0 0 0

0 1 0

)

,
(

0 0 0

0 0 1

0 0 0

)

,
(

0 0 0

0 1 0

0 0 −1

)

leading to the following f :

f(
(

x11 x12 x13

x21 x22 x23

x31 x32 x33

)

) =

= (x11 − x22, x22 − x33, x12, x13, x21, x23, x31, x32)

5. Results

In this Section the results of applying our methods are
demonstrated. The computations of logg and expp were
done with Matlab.

In Figure 4 we see a set of images of a wallet with the
average view chosen by the algorithm highlighted.

We chose a contrived, but nontrivial example to test our
new distribution. For the object recognition task we took as
the three models the same cutter but opened to three differ-
ent angles. Each one of the models was imaged from dif-
ferent directions. In Figure 5 sample pictures of each model
is shown in a different row. The goal was to recognize the
model, opening angle, from a single image. A training set
of 100 images for each angle was given and Algorithm 1
was used to find the “average” view of each class. The dis-
tribution parameters for both the usual normal distribution
(see Section 1) and Lie-normal (Section 3)distribution were

Figure 3. Different views of a wallet with the
mean view in the middle.
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small angle

medium angle

big angle

Figure 4. Each row shows a few images with
the same opening angle.

computed. The test set contained 60 images, different from
the training set (20 for each opening angle). The recog-
nition stage was implemented in the following way: for a
given image, the best homographies to the three average
views were computed, using Lowe’s [10] feature detector,
with the homography between points of interest computed
by the RANSAC algorithm [2].

The different scoring methods were: choosing the model
with the smallest fitting error obtained by a homography,
(thus using only the P (D|M, φ) term in Eq.[1]), choosing
the object with the homography having the highest prob-
ability (using the P (φ|M) term in Eq.[1]) and combining
the two, thus using the full Bayes formula. The results in
the table below show that the fitting error performs poorly
(in fact, it is not better than random) which is due to the
fact that homography has many degrees of freedom and can
align images well even if they are not images of the same
object. Combining fitting error with the usual distribution
is better, but as the results show, the Lie-normal distribution
combined with fitting error outperforms the other methods.

Method success rate
Fitting error 0.34
Normal distribution only 0.3
Lie-normal distribution only 0.47
Normal dis. and fitting error 0.44
Lie-normal dis. and fitting error 0.54

6. Summary

We proposed a new family of probability distributions
on the group of homographies. The advantage of this new
approach is the invariance of the family, thus these distri-
butions are more suitable to describe group-invariant dis-

tributions arising in computer vision. The parameters of
these distributions are easily estimated and the density sim-
ply computed. The advantage of the method as opposed to
ad hoc approach is demonstrated in a toy example of object
recognition.

For a set contained in a convex ball (every two points in
the ball have a unique geodesic between them that is con-
tained in the ball) the uniqueness of the mean and the con-
vergence of Algorithm 1 follows from [1], p.160. We show
that a ball with radius 1

5
in the Frobenius norm (‖X‖ =

√

tr(XXT ), which is the euclidian norm in R
n2

) around I

in G = SLn(R) sits in a convex ball in the sense of Section
4, thus the mean of every set contained in it is uniquely de-
fined and reached by the algorithm. In what follows d will
be the invariant metric on the group as defined above.

Lemma 1 The map expp is one-to-one on {X ∈
sln(R), ‖X‖ < 1

2
}

Suppose expp(X)=expp(Y ), then

e−XT

eX+XT

= e−Y T

eY +Y T

e−XT

eX+XT

e−Y T −Y eY T

= I

log(e−XT

eX+XT

e−Y T −Y eY T

) = 2πikI k ∈ Z

By CBH formula [14]

X + XT −XT −Y T −Y + Y T + O(‖X‖, ‖Y ‖)(X −Y )

= 2πikI k ∈ Z

with the constant in O() term smaller than 1. As
‖X‖, ‖Y ‖ < 1

2
we see that k must be zero and we have

‖X − Y ‖ < ‖X − Y ‖max(‖X‖, ‖Y ‖)

but then X = Y and the injectivity is proved.

Lemma 2 The Sectional curvature of SLn(R) with the
Riemannian structure as above is bounded by 24.

This bound is extremely loose, but it’s not the bottleneck of
our calculation, so it suffices. The norm is submultiplica-
tive, thus for any X, Y ∈ sln(R) we have

‖[X, Y ]‖ ≤ 2‖X‖‖Y ‖

By [8],p. 277 the formula for the affine connection on our
manifold is

∇XY =
1

2
([X, Y ] + [XT , Y ] + [Y T , X ])

and by the previous equation

‖∇XY ‖ ≤ 3‖X‖‖Y ‖
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Now the Sectional curvature in the plane defined by X , Y

is

σ(X, Y ) =
< ∇Y ∇XX −∇X∇Y X + ∇[X,Y ]X, Y >

‖X‖2‖Y ‖2− < X, Y >2

Without lost of generality assume ‖X‖ = ‖Y ‖ = 1 and <

X, Y >= 0. We obtain the claimed bound on the curvature:

|σ(X, Y )| ≤ 3 · 3 + 3 · 3 + 3 · 2 = 24

By [1], if the Sectional curvature of a Riemannian manifold
is bounded from above by K and the injectivity radius is
bigger than R then

ConRad ≥ min{
1

2
R,

1

2

π
√

K
}

Thus we have ConRad > 1

4
, that is, the convergence of the

algorithm is assured on the ball of radius 1

4
in the invariant

metric. To see what it means in the usual euclidian metric
in SLn(R)

Let γ(t) be a path in Rm. If ‖γ′′(t)‖ < C for 0 ≤ t ≤ 1
then ‖γ(1) − γ(0)‖ ≥ ‖γ ′(0)‖ − 1

2
C

‖γ(1)− γ(0)‖ ≥
< γ(1) − γ(0), γ′(0) >

‖γ′(0)‖

< γ(1) − γ(0), γ′(0) >=

∫

1

0

< γ′(t), γ′(0) > dt =

=

∫

1

0

<

∫ t

0

γ′′(s)ds + γ′(0), γ′(0) > dt =

=< γ′(0), γ′(0) > +

∫

1

0

∫ s

0

< γ′′(s), γ′(0) >≥

≥< γ′(0), γ′(0) > −
1

2
C‖γ′(0)‖

Collecting the pieces:

‖γ(1)− γ(0)‖ ≥ ‖γ ′(0)‖ −
1

2
C

If we take γ(t) = expp(tX) for ‖X‖ = 1

4
we can easily

bound the second derivative from above by 1

10
, thus using

the last claim we obtain: if ‖G− I‖ < 1

5
then d(G, I) < 1

4
.

In other words, the euclidian ball of radius 1

5
sits in a convex

ball in the Riemannian metric.
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