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Abstract 
 

With the growing importance of XML in data 
exchange, much research has been done in 
providing flexible query facilities to extract data 
from structured XML documents. Thereby, several 
path indexing, labelling and numbering scheme have 
been proposed. However, if XML data need to be 
updated frequently, most of these approaches will 
need to re-compute existing labels which is rather 
time consuming. The goal of the research reported in 
this paper is to design a persistent structural 
labelling scheme, namely a labelling scheme where 
labels encode ancestor-descendant relationships and 
sibling relationship between nodes but need not to be 
changed when the document is updated. Supported 
update operations are insertion of new sub-trees, 
deletion of existing sub-trees and modification of 
existing nodes.  
 
1. Introduction 
 

XML is becoming the new standard for the 
exchange and publishing of data over the Internet 
[18]. Documents obeying the XML standard can be 
viewed as trees (see figure 2).  Query language like 
XPath [9] uses path expressions to traverse XML 
data. The traditional and most beneficial technique 
for increasing query performance is the creation of 
effective indexing. A well-constructed index will 
allow a query to bypass the need of scanning the 
entire document for results. Normally, a labelling 
scheme assigns identifiers to elements such that the 
hierarchical orders of the elements can be re-
established based on their identifiers. Since 
hierarchical orders are used extensively in 
processing XML queries, the reduction of the 

computing workload for the hierarchy re-
establishment is desirable.  

With the growing importance of XML in data 
exchange and in order to achieve effective indexing, 
a number of labelling schemes for XML data have 
been proposed [1][4][5][2][7][8][11][15][17][3][6] 
[12][16]. All these techniques help to facilitate query 
processing. However, the main drawback in most of 
these works is the following: if deletions and/or 
insertions occur regularly, then expensive re-
computing of affected labels is needed. Frequently 
re-computing large amount of elements each time 
XML data is updated takes time and reduces 
performances.  

The goal of the research reported in this paper is 
to design a persistent structural labelling scheme for 
XML trees which are frequently updated. i.e. a 
labelling scheme where labels need not to be 
changed when the document is updated. Therefore, 
the contribution of this paper to the existing labelling 
schemes for XML document can briefly be 
summarized as follows: 
- We compute the label of the newly inserted 

nodes without any need of re-computing existing 
labels. 

- Our proposal supports the representation of 
ancestor/descendant relationships and sibling 
relationship. One can quickly determine the 
relationship between any two given nodes by 
looking at their unique codes.  

- Given the unique code of a node, one can easily 
determine its level and its ancestors. 
The remainder of this paper is organized as 

follows: we start with preliminary definitions in 
section 2. In section 3 we first describe the 
characteristic properties that distinguish 
identification schemes known from the literature. We 
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then point out the limitations of these propositions 
assuming documents are frequently updated. Section 
4 presents our proposed labelling scheme. Finally, 
section 5 concludes this paper. 

 
2. Preliminaries 
 

We start by defining some of the basic terms used 
in the sequel. Some of these notions were recently 
defined in [1]. We distinguish two families of 
labelling scheme:  

A static structural labelling scheme is a triple, 
<ancestor,sibling,l>, where ancestor 
and sibling are predicates over unique codes and 
l is a labelling function that given a tree t assigns a 
distinct code l(v) to each node v ∈ t. Predicates 
ancestor and sibling and the labelling 
function l are such that for every tree t and every 
two nodes v,u ∈ t, ancestor(l(v),l(u)) 
evaluates to TRUE iff v is an ancestor of u and 
sibling(l(v),l(u)) evaluates to TRUE iff v 
and u are siblings. 

A persistent structural labelling scheme is also a 
triple <ancestor,sibling,l> where 
ancestor and sibling are as before. The 
labelling function l, however, supports updates into 
a tree without any need of re-labelling existing 
nodes. Each insertion is of the form "insert node u as 
a child of node v, after or before node w". l does not 
know the insertion sequence in advance. l assigns a 
label to each inserted node. That label cannot be 
changed subsequently. 

Following techniques can be used to assign labels 
to nodes: 

The interval scheme requires numbering the 
leaves from left to right and labelling each node with 
a pair consisting of the smallest and largest labels 
attached to its descendant leafs. An ancestor test then 
amounts to an interval containment test on the labels. 
However, if the tree is updated and new leaves are 
added then labels need to be recomputed. One may 
try to fix this by leaving some "gaps" between the 
numbers of the leaves. But if one part of the 
document is heavily updated then we may run out of 
available numbers and need re-labelling. 

A range labelling scheme comes equipped with 
some order relation ≤ over unique codes. The label 
of a node v is interpreted as a pair of strings av,bv 
and the predicate ancestor is such that a node v is 
an ancestor of u iff av ≤ au ≤ bu ≤ bv. The 
interval scheme described above is an example of 
such labelling; av and bv are interpreted as integers 
with ≤ being the standard order relation over 
integers. 

In a prefix labelling scheme (or path-based 
labelling scheme) the predicate ancestor is such 
that a node v is an ancestor of u iff l(v) is a prefix 

of l(u). Consequently, labels are of varying 
length. 

A number-based scheme uses atomic numbers to 
identify nodes. Ancestor/descendant relationships 
and sibling relationship can be computed with some 
arithmetic operations, according to the numbering 
procedure. 

As we shall see in section 4, our labelling scheme 
is a persistent, prefix-based and path-based labelling 
scheme. 

In [8], authors point out that the numbering 
scheme is complementary to optimization techniques 
and that it should help solving the reconstruction and 
decision problems which can be defined as follows: 

 Reconstruction problem: how parts of the tree 
structure of the database can be reconstructed 
without accessing the database, given the label of a 
node. 

Decision problem: how to determine relations 
between two nodes without accessing the database, 
given their labels. 

In section 4, we also present the reconstruction 
and decision procedures of our scheme. 

 
3. Related Work 
 

The problem of designing a persistent labelling 
scheme for identifying nodes has been studied 
recently [17][15][11][8][5][7]. In this section we 
report the characteristics of some major existing 
identification schemes.  

 
3.1 The Work of O'Neil et al. [11] 
 

O'Neil et al. suggest a prefix based labelling 
scheme called ORDPATH. To our knowledge it is 
the first scheme to allow for arbitrary updates 
without changing any existing label. ORDPATH is 
similar conceptually to the Dewey Order described 
in [10]. ORDPATH encodes the parent-child 
relationship by extending the parent's ORDPATH 
label with a component for the child. E.g.: 1.5.3.9 is 
the parent, 1.5.3.9.1 the child. The various child 
components reflect the children relative sibling 
order, so that byte-by-byte comparison of the 
ORDPATH labels of two nodes yields the proper 
document order. The main difference between 
ORDPATH and Dewey order is that, in ORDPATH 
even number is reserved for further node insertions. 
An example of tree labelling using ORDPATH is 
depicted in figure 1. 

Update with ORDPATH 
ORDPATH assigns only positive, odd integers 

during an initial labelling; even and negative 
component values are reserved for later insertions 
into an existing tree, as explained below.  

After an initial load, authors label a newly 
inserted node to the right of all existing children of a 
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node by adding +2 to the last ordinal of the last 
child. In order to insert a node on the left of all 
existing children of the node, they label a newly 
inserted node by adding -2 to the last ordinal of the 
first child, using negative ordinal values when 
needed.  

 
Authors insert a new node y between any two 

siblings of a parent node x by creating a component 
with an even ordinal falling between the final (odd) 
ordinals of the two siblings, then following this with 
a new odd component, usually 1. For example, the 
sequence to fall between sibling nodes 3.5.5 and 
3.5.7, by providing the new siblings with the even 
caret 6 are: 3.5.6.1, 3.5.6.3, 3.5.6.5, …. 
The value 6 in component 3 (or any even value in 
any non-terminal component) represents a caret only, 
that is, it does not count as a component that 
increases the depth of the node in the tree.  

However, this approach is not suitable for deep 
trees. In order to cope with such trees, ORDPATH 
uses labels that do not reflect ancestry and thereby 
looses some of its expressivity, neither supporting 
decision of the next sibling relation nor 
reconstruction of sibling or child nodes. Therefore, 
as in [4], their labels cannot be used for structural 
queries.   

 
3.2 The Work of Duong et al. [17] 
 

In [17] Duong et al. propose a labelling scheme, 
called LSDX, which aims to support the demand of 
updating XML data without the need of re-labelling 
existing labels. LSDX uses a combination of 
numbers and letters to create unique codes for XML 
data. The approach works as follows:  

Given a node v with n child nodes: u1,u2,…,un, 
a unique code of u1 consists of its level followed by 
the code of its parent node followed by "." followed 
by b. The unique code of u2 consists of its level 
followed by the code of its parent node followed by 
"." followed by c. The labelling continues for the 
remaining child nodes in alphabetical order. 

In order to cope with further updates, authors 
state a rule for generating labels for new nodes 

without altering existing labels. However there are 
cases where this scheme leads to collisions between 
labels. 
Let us consider figure 2. Let us assume we need to 
add a node between nodes "1a.z" and "1a.zb". 
According to the LSDX scheme, the inserted node is 
labelled with "1a.zbb". Now, if we insert a node 
between nodes "1a.zb" and "1a.zc" then the new 
node will also be assigned label "1a.zbb". 

A consequence of this collision is that the LSDX 
scheme is not injective and then is not applicable. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.3 The Work of Weigel et al. [8] 
 

Weigel et al. suggest a node identification scheme 
called BIRD numbers (Balanced Index-based 
numbering scheme for Reconstruction and Decision) 
where node identifiers are integers.  

BIRD scheme works as follows: First, a structural 
summary called Ind(DB) is constructed from the 
tree database (DB). Ind(DB) is built using the 
DataGuides technique [19] together with an index 
mapping I: N→M, where N is the set of nodes of DB 
and M is the set of nodes (also called index) of 
Ind(DB). Surjective mapping I preserves the root 
and child relationship in the obvious sense. For m ∈ 
M, the set   I-1(m) is called the set of database nodes 
with index node m. Each node m of Ind(DB) is 
associated with a weight, 
w(m)=max{childCount(n)+1|n∈I-1(m)}; 
childCount(n) denotes the number of children 
of the database node n.   

While enumerating the nodes of the database, 
authors reserve the weight w(m) for all subtrees 
rooted at any of the nodes n in I-1(m). BIRD 
number Id(n) of n is then defined in a way that all 
node identifiers in the subtree of node n are 
guaranteed to fall into the interval 
[Id(n),Id(n)+w(I(n))).  

Since not all the subtrees rooted at n ∈ I-1(m) 
are of the same size, some numbers remain unused in 
the enumeration so that one could further find room 
to insert other nodes. Thus, BIRD allows for a 
limited number of node insertions, until an overflow 

1 

1.1 1.3 

1.5.3 1.5.7 

1.5 

1.3.1 1.5.1 1.5.5 1.3.3 

0a 

1a.b Figure 1: ORDPATH scheme 1a.zb 1a.zc 1a.z 

1a.zbb 1a.zbb 

Figure 2: Example of collision 
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occurs when a node has more children than its ID 
range allows for. If this happens, then a global 
reallocation of IDs becomes necessary. 
 
3.4. Other Node Identification Schemes 

 
In [14] the author proposes an index structure, the 

XPath accelerator scheme which is based on 
preorder and postorder ranks of each node v.  The 
label of a node v is a triple 
(pre(v),post(v),par(v)) where: 
- pre(v) and post(v) are respectively the 

preorder and the postorder ranks for node v 
- par(v) is the parent preorder rank for node v 

All XPath axes (descendant, ancestor, following 
and preceding, parent, child, next sibling, etc.) can 
be determined relative to an arbitrary context node. 
The author states that it is necessary to update all 
labels in the set of following nodes and in the 
ancestor axe of a newly inserted node. 

Path-based node identification schemes such as 
Dewey Order [10] use the entire root path 
<c0,…,ck> of a node at level k as node ID. Each 
offset ci denotes the position of the ancestor of level 
i. This path encoding implies that node IDs have no 
fixed size and may vary according to the depth of a 
node and its position among its siblings. Since the 
offsets are independent of each other, Dewey Order 
supports (limited) updates without altering all IDs 
assigned to other nodes. As shown in [10], 
renumbering is restricted to the descendants and 
following siblings of the node being inserted. 

[1], [5], [7], [2], [3], [6], [12], [13], [15],[16] 
propose labelling schemes which need re-labelling of 
existing labels when updates occur. 
 
4. Our Proposal 
 

In this section we present our own labelling 
scheme. It is a persistent structural labelling scheme 
which supports an infinite number of insertions 
without renumbering. Moreover, our scheme does 
not require a space of reserved IDs. Our solution is 
based on the fact that there exist an infinite number 
of rationals within an interval [a,b]; a, b being 
rationals. 
 
4.1. Static Labelling Step 

 
We label nodes by using rationals. We represent a 

rational by a pair which consists of a signed integer 
and a strictly positive integer, e.g. we represent 
rational 5/2 by the pair (5,2) and the rational  
-5/2 by the pair (-5,2). 

Our labelling scheme needs modest storage 
capacities. We label each node with a quintuple 
(l,(np, dp),(n, d)):  

- l is the level of the node in the tree.  
- (n,d) is the local label of the node. Pair (n,d) 

represents the n/d rational. 
- (np,dp) is the local label of the parent node.  

Given a level, local codes are unique. 
We assign label (0,(1,1)) to the root element. 

This label consists of three integers only since the 
root element has no parent. 0 is the level. (1,1) is 
the local code. 

Given a level l, if we assume that nodes are 
visited from left to right then the local label of a 
node is (i,1) where i is the position of the node at 
level l. Figure 3 shows an example of tree after the 
static labelling step. 

(0, [1,1]) 

(1, [1, 1], [1, 1])  (1, [1, 1], [2, 1])  (1, [1, 1], [3, 1])  

(2, [1, 1], [1, 1])  (2, [2, 1], [2, 1])  (2, [3, 1], [3, 1])  

(3, [1, 1], [1, 1])  (3, [3, 1], [2, 1])  (3, [3, 1], [3, 1])  

Figure 3: Static Labelling 
 

4.2. Dynamic Labelling Step 
 

In this section, we show how newly inserted 
nodes are dynamically labelled without changing the 
label of existing nodes. 

Rules for creating labels for new nodes 
Let v be a node to be inserted at level l. 

- If v is the first node to be inserted at level l then 
its local code is (1,1)  

- If v is inserted immediately before the node of 
local code (i,j) and if there is no other node 
before (i,j) then the local code of v is       
(i-j,j). See an example of such insertion in 
figure 4a. 

- If v is inserted immediately after the node of 
local code (i,j) and if there is no other node 
after (i,j) then the local code of v is 
(i+j,j). See an example of such insertion in 
figure 4b. 

- If v is inserted immediately before the node of 
local code (i,j) and immediately after the 
node of local code (k,h) then the local code of 
v is (a,b) with a=(i.h+k.j)\d and 
b=2.h.j\d. \ denotes the integer division. d is 
the highest common factor of (i.h+k.j) and 
2.h.j. See an example of such insertion in 
figure 4c. 
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4.3. Reconstruction and Decision Procedures 
 

According to [8], reconstruction and decision 
problems can be defined as follows: 

 Reconstruction problem: how parts of the tree 
structure of the database can be reconstructed 
without accessing the database, given the label of a 
node. 

Decision problem: how to determine relations 
between two nodes without accessing the database, 
given their labels. 
 

Reconstruction procedure 
Following the approach used in [8], we build the 

ancestor structural summary s (e.g. a DataGuide 
[19]) of the source tree t which consists of a labelled 
tree constructed as follows:  
- nodes having the same parent in the source tree t 

are represented by a unique node labelled with 
the local code of that parent in the summary 
tree s 

- the root of s represents the nodes of t having the 
root of t as parent  

- each node v of tree s represents the nodes of t 
whose parent is represented by the parent of 
node v 
For example, tree in figure 5 summarises source 

tree in figure 3. The ancestor structural summary tree 
s is held in memory and is used by the 
reconstruction procedure. Let us consider the node v 
of code (l,(np,dp),(n,d)). Without access to 
the source tree t, we can reconstruct the code 
(l’,(n’p,d’p),(n’,d’)) of its i-ancestor3 
as follows (1 ≤ i ≤ l): 
If i = l then  
- the code of the l-ancestor of v is (0,(1,1)) 
else  
- l’=l-i 
- let u be the unique node of s which has label 

(np,dp) and which is at level l-1. Let w be 
the  (i-1)-ancestor of u. Node w has label 
(n’,d’). 

- label of the parent of node w is (n’p,d’p)  
 

Decision procedure 
Let r be any of the following XPath axes: 

parent, ancestor, followingsibling. 
Given two nodes v and v' of the database, we write 
r(v,v') iff the relation r holds between v and v'. 
For example parent(v,v') means node v is the 
parent of node v'. 

We can decide about parent and 
followingsibling relations simply by looking 
at the labels of nodes v and v’. In order to decide 
about the ancestor relation we also need to access to 
the ancestor structural summary s of the source tree 
t. Let (l,[np, dp],[n, d]) be the code of v 
and let (l',[n'p, d'p],[n', d']) be the 
code of v’:  
- parent(v,v') iff l=l'+1 and 

[n'p,d'p]=[n,d] 
- followingsibling(v,v') iff  l=l', 

[n'p,d'p]=[np,dp] and n/d > n'/d'. 
- ancestor(v,v') iff l<l' and v is the  

(l'-l)-ancestor of v'. 
Evaluating the performances of the reconstruction 

and the decision procedures and comparing them 
with similar procedures in other labelling schemes 
remains work to be done.  

 
 
 
 
 
 
 

                                                           
3 Let n be a node. Let i>0 be an integer. We define the i-
ancestor of n as the node which can be reached from n with 
exactly i parent steps. The parent of n is the 1-ancestor of n. 

(1, [1, 1], [1, 1])  

(0, [1,1]) 

(1, [1, 1], [2, 1] ) (1, [1, 1], [3, 1])  

(2, [1, 1], [1, 1])  (2, [2, 1], [3, 2] ) (2, [3, 1], [2, 1])  

Figure 4c: Dynamic Labelling

(1, [1, 1], [1, 1])  

(0, [1,1]) 

(1, [1, 1], [2, 1])  (1, [1, 1], [3, 1])  

(2, [1, 1], [0, 1] ) (2, [2, 1], [1, 1])  (2, [3, 1], [2, 1])  

Figure 4a: Dynamic Labelling

(0, [1,1]) 

(1, [1, 1], [1, 1])  (1, [1, 1], [2, 1])  (1, [1, 1], [3, 1])  

(2, [1, 1], [1, 1])  (2, [2, 1], [2, 1])  (2, [3, 1], [3, 1])  

 Figure 4b: Dynamic Labelling
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5. Conclusion 
 

In this paper, we point out the limitations of 
existing labelling schemes for XML data assuming 
documents are frequently updated. We present a 
persistent structural labelling scheme where labels 
encode ancestor-descendant relationships and sibling 
relationship between nodes but need not to be 
modified when the document is updated. Our 
labelling scheme requires modest storage 
capabilities. It is based on the fact that there exists an 
infinite number of rationals between a given interval 
[a, b] of rationals. It supports an infinite number of 
updates. 
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