
A Persistent Labelling Scheme for XML and tree Databases1

Alban Gabillon Majirus Fansi 2
Université de Pau et des Pays de l'Adour

IUT des Pays de l'Adour
LIUPPA/CSYSEC

40000 Mont-de-Marsan, France
alban.gabillon@univ-pau.fr

janvier-majirus.fansi@etud.univ-pau.fr

1 This work is supported by funding from the French ministry for research under “ACI Sécurité Informatique 2003-2006. Projet CASC".
2 Majirus Fansi holds a Ph.D Scholarship granted by the Conseil Général des Landes.

Abstract

With the growing importance of XML in data
exchange, much research has been done in
providing flexible query facilities to extract data
from structured XML documents. Thereby, several
path indexing, labelling and numbering scheme have
been proposed. However, if XML data need to be
updated frequently, most of these approaches will
need to re-compute existing labels which is rather
time consuming. The goal of the research reported in
this paper is to design a persistent structural
labelling scheme, namely a labelling scheme where
labels encode ancestor-descendant relationships and
sibling relationship between nodes but need not to be
changed when the document is updated. Supported
update operations are insertion of new sub-trees,
deletion of existing sub-trees and modification of
existing nodes.

1. Introduction

XML is becoming the new standard for the
exchange and publishing of data over the Internet
[18]. Documents obeying the XML standard can be
viewed as trees (see figure 2). Query language like
XPath [9] uses path expressions to traverse XML
data. The traditional and most beneficial technique
for increasing query performance is the creation of
effective indexing. A well-constructed index will
allow a query to bypass the need of scanning the
entire document for results. Normally, a labelling
scheme assigns identifiers to elements such that the
hierarchical orders of the elements can be re-
established based on their identifiers. Since
hierarchical orders are used extensively in
processing XML queries, the reduction of the

computing workload for the hierarchy re-
establishment is desirable.

With the growing importance of XML in data
exchange and in order to achieve effective indexing,
a number of labelling schemes for XML data have
been proposed [1][4][5][2][7][8][11][15][17][3][6]
[12][16]. All these techniques help to facilitate query
processing. However, the main drawback in most of
these works is the following: if deletions and/or
insertions occur regularly, then expensive re-
computing of affected labels is needed. Frequently
re-computing large amount of elements each time
XML data is updated takes time and reduces
performances.

The goal of the research reported in this paper is
to design a persistent structural labelling scheme for
XML trees which are frequently updated. i.e. a
labelling scheme where labels need not to be
changed when the document is updated. Therefore,
the contribution of this paper to the existing labelling
schemes for XML document can briefly be
summarized as follows:
- We compute the label of the newly inserted

nodes without any need of re-computing existing
labels.

- Our proposal supports the representation of
ancestor/descendant relationships and sibling
relationship. One can quickly determine the
relationship between any two given nodes by
looking at their unique codes.

- Given the unique code of a node, one can easily
determine its level and its ancestors.
The remainder of this paper is organized as

follows: we start with preliminary definitions in
section 2. In section 3 we first describe the
characteristic properties that distinguish
identification schemes known from the literature. We

2-9525435-0 © IEEE SITIS 2005 - 103 -- 103 -- 102 - - 102 - - 102 -0000000000- 102 - - 102 - - 103 - - 104 - - 104 - - 104 - - 104 - - 104 - - 104 - - 104 - - 104 - - 104 - - 104 - - 104 - - 104 - - 110 - - 110 -

then point out the limitations of these propositions
assuming documents are frequently updated. Section
4 presents our proposed labelling scheme. Finally,
section 5 concludes this paper.

2. Preliminaries

We start by defining some of the basic terms used
in the sequel. Some of these notions were recently
defined in [1]. We distinguish two families of
labelling scheme:

A static structural labelling scheme is a triple,
<ancestor,sibling,l>, where ancestor
and sibling are predicates over unique codes and
l is a labelling function that given a tree t assigns a
distinct code l(v) to each node v ∈ t. Predicates
ancestor and sibling and the labelling
function l are such that for every tree t and every
two nodes v,u ∈ t, ancestor(l(v),l(u))
evaluates to TRUE iff v is an ancestor of u and
sibling(l(v),l(u)) evaluates to TRUE iff v
and u are siblings.

A persistent structural labelling scheme is also a
triple <ancestor,sibling,l> where
ancestor and sibling are as before. The
labelling function l, however, supports updates into
a tree without any need of re-labelling existing
nodes. Each insertion is of the form "insert node u as
a child of node v, after or before node w". l does not
know the insertion sequence in advance. l assigns a
label to each inserted node. That label cannot be
changed subsequently.

Following techniques can be used to assign labels
to nodes:

The interval scheme requires numbering the
leaves from left to right and labelling each node with
a pair consisting of the smallest and largest labels
attached to its descendant leafs. An ancestor test then
amounts to an interval containment test on the labels.
However, if the tree is updated and new leaves are
added then labels need to be recomputed. One may
try to fix this by leaving some "gaps" between the
numbers of the leaves. But if one part of the
document is heavily updated then we may run out of
available numbers and need re-labelling.

A range labelling scheme comes equipped with
some order relation ≤ over unique codes. The label
of a node v is interpreted as a pair of strings av,bv
and the predicate ancestor is such that a node v is
an ancestor of u iff av ≤ au ≤ bu ≤ bv. The
interval scheme described above is an example of
such labelling; av and bv are interpreted as integers
with ≤ being the standard order relation over
integers.

In a prefix labelling scheme (or path-based
labelling scheme) the predicate ancestor is such
that a node v is an ancestor of u iff l(v) is a prefix

of l(u). Consequently, labels are of varying
length.

A number-based scheme uses atomic numbers to
identify nodes. Ancestor/descendant relationships
and sibling relationship can be computed with some
arithmetic operations, according to the numbering
procedure.

As we shall see in section 4, our labelling scheme
is a persistent, prefix-based and path-based labelling
scheme.

In [8], authors point out that the numbering
scheme is complementary to optimization techniques
and that it should help solving the reconstruction and
decision problems which can be defined as follows:

 Reconstruction problem: how parts of the tree
structure of the database can be reconstructed
without accessing the database, given the label of a
node.

Decision problem: how to determine relations
between two nodes without accessing the database,
given their labels.

In section 4, we also present the reconstruction
and decision procedures of our scheme.

3. Related Work

The problem of designing a persistent labelling
scheme for identifying nodes has been studied
recently [17][15][11][8][5][7]. In this section we
report the characteristics of some major existing
identification schemes.

3.1 The Work of O'Neil et al. [11]

O'Neil et al. suggest a prefix based labelling
scheme called ORDPATH. To our knowledge it is
the first scheme to allow for arbitrary updates
without changing any existing label. ORDPATH is
similar conceptually to the Dewey Order described
in [10]. ORDPATH encodes the parent-child
relationship by extending the parent's ORDPATH
label with a component for the child. E.g.: 1.5.3.9 is
the parent, 1.5.3.9.1 the child. The various child
components reflect the children relative sibling
order, so that byte-by-byte comparison of the
ORDPATH labels of two nodes yields the proper
document order. The main difference between
ORDPATH and Dewey order is that, in ORDPATH
even number is reserved for further node insertions.
An example of tree labelling using ORDPATH is
depicted in figure 1.

Update with ORDPATH
ORDPATH assigns only positive, odd integers

during an initial labelling; even and negative
component values are reserved for later insertions
into an existing tree, as explained below.

After an initial load, authors label a newly
inserted node to the right of all existing children of a

- 104 -- 104 -- 103 - - 103 - - 103 -0000000000- 103 - - 103 - - 104 - - 105 - - 105 - - 105 - - 105 - - 105 - - 105 - - 105 - - 105 - - 105 - - 105 - - 105 - - 105 - - 111 - - 111 -

node by adding +2 to the last ordinal of the last
child. In order to insert a node on the left of all
existing children of the node, they label a newly
inserted node by adding -2 to the last ordinal of the
first child, using negative ordinal values when
needed.

Authors insert a new node y between any two

siblings of a parent node x by creating a component
with an even ordinal falling between the final (odd)
ordinals of the two siblings, then following this with
a new odd component, usually 1. For example, the
sequence to fall between sibling nodes 3.5.5 and
3.5.7, by providing the new siblings with the even
caret 6 are: 3.5.6.1, 3.5.6.3, 3.5.6.5, ….
The value 6 in component 3 (or any even value in
any non-terminal component) represents a caret only,
that is, it does not count as a component that
increases the depth of the node in the tree.

However, this approach is not suitable for deep
trees. In order to cope with such trees, ORDPATH
uses labels that do not reflect ancestry and thereby
looses some of its expressivity, neither supporting
decision of the next sibling relation nor
reconstruction of sibling or child nodes. Therefore,
as in [4], their labels cannot be used for structural
queries.

3.2 The Work of Duong et al. [17]

In [17] Duong et al. propose a labelling scheme,
called LSDX, which aims to support the demand of
updating XML data without the need of re-labelling
existing labels. LSDX uses a combination of
numbers and letters to create unique codes for XML
data. The approach works as follows:

Given a node v with n child nodes: u1,u2,…,un,
a unique code of u1 consists of its level followed by
the code of its parent node followed by "." followed
by b. The unique code of u2 consists of its level
followed by the code of its parent node followed by
"." followed by c. The labelling continues for the
remaining child nodes in alphabetical order.

In order to cope with further updates, authors
state a rule for generating labels for new nodes

without altering existing labels. However there are
cases where this scheme leads to collisions between
labels.
Let us consider figure 2. Let us assume we need to
add a node between nodes "1a.z" and "1a.zb".
According to the LSDX scheme, the inserted node is
labelled with "1a.zbb". Now, if we insert a node
between nodes "1a.zb" and "1a.zc" then the new
node will also be assigned label "1a.zbb".

A consequence of this collision is that the LSDX
scheme is not injective and then is not applicable.

3.3 The Work of Weigel et al. [8]

Weigel et al. suggest a node identification scheme
called BIRD numbers (Balanced Index-based
numbering scheme for Reconstruction and Decision)
where node identifiers are integers.

BIRD scheme works as follows: First, a structural
summary called Ind(DB) is constructed from the
tree database (DB). Ind(DB) is built using the
DataGuides technique [19] together with an index
mapping I: N→M, where N is the set of nodes of DB
and M is the set of nodes (also called index) of
Ind(DB). Surjective mapping I preserves the root
and child relationship in the obvious sense. For m ∈
M, the set I-1(m) is called the set of database nodes
with index node m. Each node m of Ind(DB) is
associated with a weight,
w(m)=max{childCount(n)+1|n∈I-1(m)};
childCount(n) denotes the number of children
of the database node n.

While enumerating the nodes of the database,
authors reserve the weight w(m) for all subtrees
rooted at any of the nodes n in I-1(m). BIRD
number Id(n) of n is then defined in a way that all
node identifiers in the subtree of node n are
guaranteed to fall into the interval
[Id(n),Id(n)+w(I(n))).

Since not all the subtrees rooted at n ∈ I-1(m)
are of the same size, some numbers remain unused in
the enumeration so that one could further find room
to insert other nodes. Thus, BIRD allows for a
limited number of node insertions, until an overflow

1

1.1 1.3

1.5.3 1.5.7

1.5

1.3.1 1.5.1 1.5.5 1.3.3

0a

1a.b Figure 1: ORDPATH scheme 1a.zb 1a.zc 1a.z

1a.zbb 1a.zbb

Figure 2: Example of collision

- 105 -- 105 -- 104 - - 104 - - 104 -0000000000- 104 - - 104 - - 105 - - 106 - - 106 - - 106 - - 106 - - 106 - - 106 - - 106 - - 106 - - 106 - - 106 - - 106 - - 106 - - 112 - - 112 -

occurs when a node has more children than its ID
range allows for. If this happens, then a global
reallocation of IDs becomes necessary.

3.4. Other Node Identification Schemes

In [14] the author proposes an index structure, the

XPath accelerator scheme which is based on
preorder and postorder ranks of each node v. The
label of a node v is a triple
(pre(v),post(v),par(v)) where:
- pre(v) and post(v) are respectively the

preorder and the postorder ranks for node v
- par(v) is the parent preorder rank for node v

All XPath axes (descendant, ancestor, following
and preceding, parent, child, next sibling, etc.) can
be determined relative to an arbitrary context node.
The author states that it is necessary to update all
labels in the set of following nodes and in the
ancestor axe of a newly inserted node.

Path-based node identification schemes such as
Dewey Order [10] use the entire root path
<c0,…,ck> of a node at level k as node ID. Each
offset ci denotes the position of the ancestor of level
i. This path encoding implies that node IDs have no
fixed size and may vary according to the depth of a
node and its position among its siblings. Since the
offsets are independent of each other, Dewey Order
supports (limited) updates without altering all IDs
assigned to other nodes. As shown in [10],
renumbering is restricted to the descendants and
following siblings of the node being inserted.

[1], [5], [7], [2], [3], [6], [12], [13], [15],[16]
propose labelling schemes which need re-labelling of
existing labels when updates occur.

4. Our Proposal

In this section we present our own labelling
scheme. It is a persistent structural labelling scheme
which supports an infinite number of insertions
without renumbering. Moreover, our scheme does
not require a space of reserved IDs. Our solution is
based on the fact that there exist an infinite number
of rationals within an interval [a,b]; a, b being
rationals.

4.1. Static Labelling Step

We label nodes by using rationals. We represent a

rational by a pair which consists of a signed integer
and a strictly positive integer, e.g. we represent
rational 5/2 by the pair (5,2) and the rational
-5/2 by the pair (-5,2).

Our labelling scheme needs modest storage
capacities. We label each node with a quintuple
(l,(np, dp),(n, d)):

- l is the level of the node in the tree.
- (n,d) is the local label of the node. Pair (n,d)

represents the n/d rational.
- (np,dp) is the local label of the parent node.

Given a level, local codes are unique.
We assign label (0,(1,1)) to the root element.

This label consists of three integers only since the
root element has no parent. 0 is the level. (1,1) is
the local code.

Given a level l, if we assume that nodes are
visited from left to right then the local label of a
node is (i,1) where i is the position of the node at
level l. Figure 3 shows an example of tree after the
static labelling step.

(0, [1,1])

(1, [1, 1], [1, 1]) (1, [1, 1], [2, 1]) (1, [1, 1], [3, 1])

(2, [1, 1], [1, 1]) (2, [2, 1], [2, 1]) (2, [3, 1], [3, 1])

(3, [1, 1], [1, 1]) (3, [3, 1], [2, 1]) (3, [3, 1], [3, 1])

Figure 3: Static Labelling

4.2. Dynamic Labelling Step

In this section, we show how newly inserted
nodes are dynamically labelled without changing the
label of existing nodes.

Rules for creating labels for new nodes
Let v be a node to be inserted at level l.

- If v is the first node to be inserted at level l then
its local code is (1,1)

- If v is inserted immediately before the node of
local code (i,j) and if there is no other node
before (i,j) then the local code of v is
(i-j,j). See an example of such insertion in
figure 4a.

- If v is inserted immediately after the node of
local code (i,j) and if there is no other node
after (i,j) then the local code of v is
(i+j,j). See an example of such insertion in
figure 4b.

- If v is inserted immediately before the node of
local code (i,j) and immediately after the
node of local code (k,h) then the local code of
v is (a,b) with a=(i.h+k.j)\d and
b=2.h.j\d. \ denotes the integer division. d is
the highest common factor of (i.h+k.j) and
2.h.j. See an example of such insertion in
figure 4c.

- 106 -- 106 -- 105 - - 105 - - 105 -0000000000- 105 - - 105 - - 106 - - 107 - - 107 - - 107 - - 107 - - 107 - - 107 - - 107 - - 107 - - 107 - - 107 - - 107 - - 107 - - 113 - - 113 -

4.3. Reconstruction and Decision Procedures

According to [8], reconstruction and decision
problems can be defined as follows:

 Reconstruction problem: how parts of the tree
structure of the database can be reconstructed
without accessing the database, given the label of a
node.

Decision problem: how to determine relations
between two nodes without accessing the database,
given their labels.

Reconstruction procedure
Following the approach used in [8], we build the

ancestor structural summary s (e.g. a DataGuide
[19]) of the source tree t which consists of a labelled
tree constructed as follows:
- nodes having the same parent in the source tree t

are represented by a unique node labelled with
the local code of that parent in the summary
tree s

- the root of s represents the nodes of t having the
root of t as parent

- each node v of tree s represents the nodes of t
whose parent is represented by the parent of
node v
For example, tree in figure 5 summarises source

tree in figure 3. The ancestor structural summary tree
s is held in memory and is used by the
reconstruction procedure. Let us consider the node v
of code (l,(np,dp),(n,d)). Without access to
the source tree t, we can reconstruct the code
(l’,(n’p,d’p),(n’,d’)) of its i-ancestor3
as follows (1 ≤ i ≤ l):
If i = l then
- the code of the l-ancestor of v is (0,(1,1))
else
- l’=l-i
- let u be the unique node of s which has label

(np,dp) and which is at level l-1. Let w be
the (i-1)-ancestor of u. Node w has label
(n’,d’).

- label of the parent of node w is (n’p,d’p)

Decision procedure
Let r be any of the following XPath axes:

parent, ancestor, followingsibling.
Given two nodes v and v' of the database, we write
r(v,v') iff the relation r holds between v and v'.
For example parent(v,v') means node v is the
parent of node v'.

We can decide about parent and
followingsibling relations simply by looking
at the labels of nodes v and v’. In order to decide
about the ancestor relation we also need to access to
the ancestor structural summary s of the source tree
t. Let (l,[np, dp],[n, d]) be the code of v
and let (l',[n'p, d'p],[n', d']) be the
code of v’:
- parent(v,v') iff l=l'+1 and

[n'p,d'p]=[n,d]
- followingsibling(v,v') iff l=l',

[n'p,d'p]=[np,dp] and n/d > n'/d'.
- ancestor(v,v') iff l<l' and v is the

(l'-l)-ancestor of v'.
Evaluating the performances of the reconstruction

and the decision procedures and comparing them
with similar procedures in other labelling schemes
remains work to be done.

3 Let n be a node. Let i>0 be an integer. We define the i-
ancestor of n as the node which can be reached from n with
exactly i parent steps. The parent of n is the 1-ancestor of n.

(1, [1, 1], [1, 1])

(0, [1,1])

(1, [1, 1], [2, 1]) (1, [1, 1], [3, 1])

(2, [1, 1], [1, 1]) (2, [2, 1], [3, 2]) (2, [3, 1], [2, 1])

Figure 4c: Dynamic Labelling

(1, [1, 1], [1, 1])

(0, [1,1])

(1, [1, 1], [2, 1]) (1, [1, 1], [3, 1])

(2, [1, 1], [0, 1]) (2, [2, 1], [1, 1]) (2, [3, 1], [2, 1])

Figure 4a: Dynamic Labelling

(0, [1,1])

(1, [1, 1], [1, 1]) (1, [1, 1], [2, 1]) (1, [1, 1], [3, 1])

(2, [1, 1], [1, 1]) (2, [2, 1], [2, 1]) (2, [3, 1], [3, 1])

 Figure 4b: Dynamic Labelling

- 107 -- 107 -- 106 - - 106 - - 106 -0000000000- 106 - - 106 - - 107 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - 108 - - 114 - - 114 -

5. Conclusion

In this paper, we point out the limitations of
existing labelling schemes for XML data assuming
documents are frequently updated. We present a
persistent structural labelling scheme where labels
encode ancestor-descendant relationships and sibling
relationship between nodes but need not to be
modified when the document is updated. Our
labelling scheme requires modest storage
capabilities. It is based on the fact that there exists an
infinite number of rationals between a given interval
[a, b] of rationals. It supports an infinite number of
updates.

References

[1] Edith Cohen, Haim Kaplan, and Tova Milo.

Labeling Dynamic XML trees. In PODS, pages 271-
281, 2002.

[2] S. Abiteboul, H. Kaplan, and T. Milo. Compact
labelling schemes for ancestor queries. In Proc.
ACM-SIAM Symposium on Discrete Algorithms
(SODA), January 2001.

[3] S. Alstrup and T. Rauhe. Improved labelling scheme
for ancestor queries. In Proc. ACM-SIAM
Symposium on Discrete Algorithms (SODA),
January 2002.

[4] A. Marian, S. Abiteboul, G. Cobena, and L. Mignet.
Change-centric management of versions in an XML
warehouse. In Proc. Int. Conf. on Very Large Data
Bases (VLDB), September 2001.

[5] Yi Chen, G. A. Mihaila, R. Bordawekar, and S.
Padmanabhan. L-Tree: a Dynamic Labeling
Structure for Ordered XML Data. LNCS 3268 –
Current Trends in Database Technology Springer-
Verlag 2004.

[6] Q. Li an B. Moon. Indexing and querying XML data
for regular path expressions. In Proc. Of the 27th
VLDB Conf., Pages 361-370, 2001.

[7] H. Wang, S. Park, W. Fan, and P. S. Yu. ViST: A
Dynamic Index Method for Querying XML Data by
Tree Structures. In SIGMOD 2003.

[8] F. Weigel, K.U. Schulz and H. Meuss. The BIRD
Numbering Scheme for XML and Tree Databases –
Deciding and Reconstructing Tree Relations using
Efficient Arithmetic Operations. Third International

XML Database Symposium, XSym 05,
Trondheim,Norway. September 2005.

[9] J. Clark and S. DeRose. “XML Path Language
(XPath) version 1.0”. World Wide Web Consortium
(W3C). http://www.w3.org/TR/xpath, November 16,
1999.

[1,1]

[10] I. Tatarinov, S. Viglas, K. S. Beyer, J.
Shanmugasundaram, E. J. Shekita, and C. Zhang.
Storing and Querying Ordered XML Using a
Relational Database System. In proceedings of the
ACM SIGMOD International Conference on
Management of Data, pages 204-215, 2002.

[1,1] [2,1] [3,1]

[1,1] [3,1]

[11] P. O'Neil, E. O'Neil, S. Pal, I. Cseri, G. Schaller, and
N. Westbury. ORDPATHs: Insert-Friendly XML
Node Labels. In Proceedings of the 2004 ACM
SIGMOD International Conference on Management
of data, pages 903 – 908, 2004.

Figure 5: Ancestor Structural Summary

[12] J. M. Bremer and M. Gertz. An efficient XML Node
Identification and Indexing Scheme. Technical
Report CSE-2003-04, Department of Computer
Science, University of California at Davis, 2003.

[13] Y.K. Lee, S. J. Yoo, K. Yoon, and P.B. Berra. Index
structures for structured documents. In Proceedings
of the 1st ACM International Conference on Digital
Libraries, pages 91-99, 1996.

[14] T. Grust. Accelerating XPath location steps. In
proceedings of ACM SIGMOD International
Conference on Management of Data, pages 109 –
120, 2002.

[15] D. D. Kha, M. Yoshikawa and S. Uemura: A
Structural Numbering Scheme for Processing
Queries by Structure and Keyword on XML Data',
IEICE Transactions on Information Systems, 2004.

[16] Y. K. Lee, S-J. Yoo, K. Yoon, P. B. Berra. Index
Structures for structured documents. ACM first Inter.
Conf. on Digital Libraries, Maryland, 91 – 99, 1999.

[17] M. Duong and Y. Zhang. LSDX: A new Labelling
Scheme for Dynamically Updating XML Data. In
Proc. Of the 16th Australasian Database Conference,
Newcastle, Australia, 2005.

[18] T. Bray et al. "eXtensible Markup Language (XML)
1.0" World Wide Web Consortium (W3C).
http://www.w3.org/TR/REC-xml. October 2000.

[19] R. Goldman and J. Widom. DataGuides: Enabling
Query Formulation and Optimization in
Semistructured Databases. In Proc. 23rd VLDB Conf,
pages 436-445, 1997.

- 108 -- 108 -- 107 - - 107 - - 107 -0000000000- 107 - - 107 - - 108 - - 109 - - 109 - - 109 - - 109 - - 109 - - 109 - - 109 - - 109 - - 109 - - 109 - - 109 - - 109 - - 115 - - 115 -

