Querying of Open Source Programs Libraries: an Approach Based on a
XML Metadata Repository

Konan Marcellin BROU
Institut National Polytechnique F.H. Boigny, Department of Mathematics & Computer
Science P.O. Box 1093 Yamoussoukro (Cote d’Ivoire)
Tel.: Fax: (225) 30640541 / 30640406, Email: konanmarcellin@yahoo.fr

Abstract

The conception of components that libraries of
open source program contain, allows the reduction
of production and maintenance cost of software. In
order to use these libraries, the developer consults
each library manually, and reads the documentation
before choosing a component. Therefore, this
process must be automated, mainly if several
libraries are to be consulted. The semantic and
significant aspects of each library and its
components are displayed in an XML document
called info-component, which is based on an UML
model of metadata. This model has allowed us to
implement an info-component repository on the
libraries and their components, as well as methods
and search techniques of components, which are
based upon the XQuery request language. The user
can have access to this repository via an Intranet
network or Internet. A prototype has been designed
and tested on some libraries, which include
Lapack++, MV++ and SparseLib++ in the field of
software computing.

1. Introduction

Current software applications have become more
and more complex and expensive. Component reuse
approach is a technique, which permits the
development of new software by using components
already existing rather than developing each system
from the very beginning. The reuse of components
must lead to more rapid development time and to
lower costs. Therefore, it can improve productivity
and the quality of the new components [1]. Although
there exist many library programs whose access is
free (open-source for instance), these components
are not always well organized and documented. As a
result, choosing a component becomes long and
complex. The search process is one of the critical
points of reuse because a developer does not

2-9525435-0 © IEEE SITIS 2005

necessarily know the existence of components that
he/she wish to create.

This work aims at improving the process of
searching, localizing and extracting component
software in the context of PSRep (Pau Software
Repository), which is a managing system of source
code library developed at the University of Pau for
the reuse of software. The PSRep project was
initiated at a search convention for the development
of a catalog and software component browser
required by the IFP (Institut Francais du Pétrole) [2]
in the field of software computing.

In order to use these libraries, the developer
manually consults each library, reads the
documentation before choosing component software.
This task aims at automating the reuse process of
these components, especially if there is a need to
consult several libraries. A component is software,
which does a favor by means of an external interface
[3]. As far as we are concerned, a component is a
class or a function. There exist two kinds of
components: the “black box” components whose
access is exclusively via their interface, and the
“white box” components whose source code is
accessible. We are interested in the reuse of “white
box” components in order to reduce the production
cost and maintenance of the software. In order to
make reuse increase productivity in software
development [4], three basic operations are
essentially carried out. These operations are: (i)
cataloging the components, (ii) searching the
components, (iii) re-using components as they have
been found or adapting them to their needs.

Finding an adequate component for a given
application goes either via a “linear” consultation of
diverse components of the platform (services), or
through a request process based criteria, which can
appear very numerous and complex. To take
advantage of these components, the management
system of the library programs must be completed by
a semantic description of the components, which
have been extracted from their code; we call them
“internal metadata”. They must also be completed by
an index description (author, creation date, language

-100 -

etc...); they are independent from data that we call
“external metadata”. These metadata respect the
requirements of the metadata of the Dublin Core [5],
which is referred to in the field of electronic resource
description.

We conceptualize metadata as a bunch of
descriptors, which can identify specific components.
The semantic and index aspects of the descriptors are
integrated into an UML model of metadata. This
model has allowed us to implement a metadata base
on the libraries and their components. Each library
and its components are described according to this
model, and are represented in a XML document that
we call (info-component), and which respects a DTD
as a translator of this UML model. The metadata
base (or catalog) is composed of as many info-
components as there are libraries. The XML
document base is then an info-component repository.
This model has also allowed us to implement
methods and techniques of component search via
info-component repository and language request
XQuery [6].

An interface has been conceived in order to
automate or provide some help for the reuse of these
components. This help allows: (1) the automatic
extraction of the internal metadata from a given
library; (2) the manual indexation of the external
metadata from a form or an XML document in which
these specific information have been stocked; (3) the
updating of the info-component repository; (4) the
consultation and surfing in the repository; (5) the
search of components from the repository info-
component (use of master request XQuery); (6) the
extraction of a component from the base of program
library.

The interest and the contribution of this work can
be summarized as follows: (1) Creation of model for
the structure of components within an XML
document repository; this assures some inter
operation with other tools of development of
component-based software; (2) Use of metadata and
thesaurus, which favor search via classic search
channels; (3) Generic solution that can be applied to
any kind of component library, whose source code is
accessible.

In this paper, we specifically focalize our interest
on the proposed metadata UML model and its
implementation as an XML database document, as
well as the development of question tools with the
help of XQuery request. A prototype has been
developed and tested on some libraries like
Lapack++ [7], MV++ [8] and SparseLib ++ [9] in
the field of software computing.

This article is organized as follows: in section 2,
we present some work on component reuse. Then in
section 3, we detail our approach which rests upon a
metadata base on components and on an info-
component repository. Later in the section 4, we

present the component search process. Eventually in
section 5, we present the prototype implementation
process, which allows to stock components and do
search on them, together with a conclusion that
comes after.

2. Software component management

The management of components includes two
aspects: the creation of model for components in
order to stock them, and the query process to retrieve
them. Amongst the diverse undertaken works,
several are about component search and reuse. As far
as [1] is concerned, it is simply to reuse existing
components in any software developmental phase.
Its architecture uses a mediation layer, which
integrates the web semantic component with the
acknowledged components. They are recorded in
virtual library components. These components are
described through XML and published by a local
repository or distant server. They use field ontology
for the reuse of components. On its part, [10]
develops strategies or tools to assist the developer in
the process of testing and assessing component
candidates. It uses an XML schema for the
description of components. Works in [11] are based
on efficient component search via key words or out
of similarity between components. [12] proposes a
component search tool called “black box”, which
uses a field ontology linked to a repository. It
proposes a component description model and
different methods of search based on the text, the
lexis or a formal specification.

These works just interest “black box” software
components, which are exclusively accessible
through their interfaces. Therefore, it is impossible
to have access to their source code. As a result,
reusing process takes place on the whole component,
and the problem that needs to be solved simply
concerns the selection of the required component.
Our task then consists in finding and re-using not
only part of the source code of the components, but
also in carrying out delicate search, which is based
on keywords contained in their source code or their
documentation. There exist different approaches,
which permit to apprehend the problem of the reuse
of the components [13]: to develop in order to be
used, and to use in order to develop. We side with
the second approach, which consists on the one hand
in exploiting the component source code, and on the
other hand, in exploiting the external documentation,
which goes with the library, if it exists. Such
documentation software as Doxygen and JavaDoc
automatically extracts the internal metadata, which
are embedded in the component source code, in
order to feed an XML document base.

-101 -

3. Software component metadata

A catalog is defined as an information base,
which describes functional and structural properties
of several program libraries. This information is
metadata represented in documents that are called
info-components. Metadata or data on a datum, give
information on the nature and characteristics of other
data. They help users in their attempt to discover the
existence of resources and the nature of what they
look for [14]. They are used to look for, to reuse, to
disseminate, to publish multiple contents (texts,
images, video, etc.). Our catalog is metadata
(commonly called index), which describe info-
components made of two sorts of descriptors: index
descriptors and semantic descriptors.

3.1. Index descriptors

Index descriptors, which are called ‘“external
metadata”, exclusively allow the description of
program library without reference to its content (i.e.
its components). These descriptors are manually
extracted from the external documentation that goes
with them, and which are stored in an XML
document: name, language, version, field, etc...
These metadata fit in the Dublin Core [5] metadata
norm so that a reference can easily be given to the
info-components through classic search channels.
This norm is a bunch of 15 metadata elements
relating to: Content: Title, Description, Subject,
Coverage, Type, Relation; Intellectual property:
Creator, Contributor, Publisher, Rights; and
Version: Date, Format, Identify, and Language.

3.2. Semantic descriptors

The semantic descriptors, which are commonly
called “internal metadata”, allow the exclusive
description of component functional proprieties.
They are automatically extracted from component
source code. Firstly, the principle consists in
producing documents in which is integrated the
semantic description of components, by using such
document software as Doxygen and JavaDoc.
Secondly, these documents are analyzed in order to
extract such descriptors as the name of the
components, their source files, the method name and
their signatures etc... (Figure 2.). The metadata
conceptual method for an info-component that we
present in next paragraph allows to make a model of
these two types of descriptors.

3.3. Metadata model for Info-component

After studying the running and analyzing the
yielded documents via documentation software, the

data model for an info-component as formally
translated in UML (Figure 1.). This model includes
two parts: one part allows the index description of
components: Library, Documentation, Author,
Platform, Keywords, and another part describes the
semantic description of components, which have
been automatically extracted from their code source
(Component, FileSrc, Service)

Library
PlateForm IName
L L*] urL
pName field
opSystem language

description
1% version

Author
aName . . \ 1%
institution " L%

address Documentation
Component
~ dName
cName size
reuse. . format
description date
URL
1.* 1%
1.% 1%
FileSrc Service keyword
fName 1.% sName kName
size signature institution
date code
URL description
address

Figure 1. Metadata model for info-
component.

3.4. XML document model for an Info-
component

XML (eXtensible Markup Language) allows the
representation of structured and non structured data;
it therefore facilitates the automated processing of
documents and data. An XML document possesses a
labeled tree-structure. The rules, which permit the
rigorous building of such a tree, are provided by a
DTD (Document Type Definition). Our XML
document model for an info-component is based on a
DTD, which derives from the UML metadata model
as described below (Figure 1.). This transformation
can be realized by such a tool as ArgoUML [22].

Info-component|

Metadata repository

extraction
tool

Program
library

Semantic generator
descriptors

Info-

component
repository

Figure 2. Process of generating info-
component repository

Each library program is represented by a well
formed and valid XML document (info-component)

-102 -

which respects this DTD. An info-component is an
XML document which contains the index and
semantic description of components. The info-
component repository is constituted by the whole
bunch of these XML documents.

4. Component search

There exist two kinds of search: surfing search
and questioning search. Surfing search consists in
looking for a component via “idea association” by
scrolling the info-components as it occurs in a
hypertext. As far as the questioning search that we
present in forthcoming paragraphs, it consists in
submitting requests to the info-component
repository. These requests are based on the use of
keywords coming from a thesaurus.

4.1. XML thesaurus model

A thesaurus is defined as a tool which traces lexis
which is specific to a given field. It includes a
number of terms (descriptors and non-descriptors)
and relations, which specify their semantic
environment [15] [16]. Our thesaurus turns the field
concepts into models with the help of terminology
information, which allows a structural but informal
representation of knowledge. The structure of the
concept contains linguistic knowledge which relate
to its equivalent terms, and conceptual knowledge,
which put it into a hierarchy. The notion of
terminological file is used to describe the concepts
thanks to a common structure. Each field of this
concept is called “terminological information” (term,
language, definition, generic concepts, sub-concepts,
synonym, homonym, linked concepts, and image)
[17].

Two types of links are turned into models: (1)
vertical links which represent hierarchical relations
existing between concepts (generalization,
specification). Notions of generic concepts and sub-
concepts are re-found there. (2) Horizontal links
which correspond to reference links, i.e. the semantic
relations existing between the concepts. These links
represent the notions of synonymy, homonymy and
linked concepts. Horizontal links are used to trace
component via similarity process. This approach is
interesting since not only can it permit to find the
correct component, but also all those which are
linked by any conceptual relation [18]. The
following DTD allows people to turn the thesaurus
into model.

<!ELEMENT domain (concept+)>

<!ELEMENT concept (term, language, image, definition,
context, rc* ,keyword+)>

<JATTLIST concept id CDATA #REQUIRED>
<!ELEMENT term (#PCDATA)>

<!/ELEMENT language (#PCDATA)>
<!ELEMENT image (#PCDATA)>

<!ELEMENT definition (#PCDATA)>
<!ELEMENT context (#PCDATA)>

<!ELEMENT rc (cg*, cl* sc*synonym®, homonym*)>
<!ELEMENT cg (reference*)>

<!ELEMENT sc (reference*)>

<!ELEMENT cl (reference*)>

<!ELEMENT synonym (reference*)>
<!ELEMENT homonym (reference*)>
<!ELEMENT reference (#PCDATA)>
<JATTLIST reference lien CDATA #REQUIRED>
<!ELEMENT keyword (name)>

<!ATTLIST keyword bib CDATA "">
<!ELEMENT name (#PCDATA)>

All the relations (hierarchical and semantic)
which exist between the concepts are represented by
the attribute link of the reference element. This
allows all the links to be managed in the same way.

4.2. Search process

Matrix
. Rectangular Diagonal Triangular
Generic g £0! 8!
. matrix matrix matrix
matrix T / \
Square > Triangular < Triangular
matrix matrix matrix

Figure 3. Domain thesaurus.

Through the thesaurus field, users can look for
components in a transparent and uniform way,
without referring to their location. The process of
looking for components occurs as follows: the user
submits her/his request via the simple use of terms in
the thesaurus (Figure 3.); the request Manager
determines the names of the components, which
correspond these terms before translating the user
request into XQuery requests. For the time being the
thesaurus is built manually as follows:
<domain>

<concept id="2">
<term>Rectangular matrix</term>
<language>English</language>
<definition>Matrix having number of lines and number
of columns different</definition>
<rc><cg><reference lien="1"/></cg>
<cl><reference lien="3"/><reference
</cl>
</rc>
<keyword bib="Lapack++">LaGenMatDouble
</keyword>
<keyword bib="Lapack++">LaGenMatComplex
</keyword>
<keyword bib="MV++"> MV_Mat_Int </keyword>
</concept>
</domain>

lien="4"/>

-103 -

4.2.1. XQuery Request: XML Query language or
XQuery is a language for XML, and it is defined by
W3C for the different types of XML applications; it
is a statement language, and remains similar to SQL
language. However, SQL language manipulates
tables (integer n-uplets) whereas XQuery
manipulates tree sequences. XQuery is a deeply
typical functional language; it supports classic task
processing and questioning XML applications. It
contains Xpath expressions in order to scroll and
extract XML fragments of documents, and
expressions to build new XML documents. The
expression flower: FWLR (For-Let-Where-Return)
permits to build, trees from another tree. Its syntax is
as follows: for a in f where c return a’ with:

e for: permits to have access to another a of forest

f
e where: permits to check if tree a answers
condition ¢

® return: permits to build a new tree a’, from tree a
The let clause of the syntax let $var: = exp affects
one phrase to another.

4.2.2. Request form: A request form as in Figure 4.
enables people to submit requests in a graphic form
without knowing the structure and the storage place
of the info-component repository. Here is an
example of request: “Searching for components

which process “rectangular matrix”.

'Y Comporets Sarch Syt Micravot et Exgior
fowr R 4 % 1

Compoments Search Interface

Componznis Search Results

The following compotests have baes foud for actmpler s

Thesamms torms: Scargu gt « | Seat

Library Authors Soarces Componeat Serviees Sigmaturss \‘—

A T b s Lo Lo W bt oa

Kevworks:

ae T ot i g o el BT bk

Figure 4. Request form.

After selecting the term of the thesaurus,
“rectangular matrix”, the system finds the names of
corresponding components: LaGenMatDouble,
LaGenMatComplex... The request can then be
refined in the second part of the interface by
choosing a component name, and an index or
semantic descriptor. The graphic request is then
translated into XQuery request.

4.2.3. Translation into XQuery: The graphic
request is then translated into XQuery request

through the use of request “models” or parameter
request. The request “model” permits to find the
signatures of component methods which are linked
to a thesaurus term in the following form:
Sor $t in document("thesaurus.xml")//domain/concept
where $t/term=3$term return
Sor $m in $t/keyword return
if ($m/text() = $cName) then
let $b : = concact($m/@bib, "XML.xml1")
let $c¢ :=3m/text() return
let $x : document($b)//library
for $y in document(3$b)//library/component
where $y/cName = $c return
<signatures>{$y/service/signature}</signatures>
else
9
The request “model” contains free variables
$term, $cName and $b, which will be respectively
instancied by a term form the thesaurus, a name of
component and an info-component. The request,
which permits to find the signatures of a component
method LaGenMatDouble linked to the thesaurus’
rectangular matrix, is translated into XQuery as
follows:
for $t in document("thesaurus.xml")//domain/concept
where $t/term="Rectangular matrix" return
for $m in $t/keyword return
if ($m/text() = "LaGenMatDouble") then
let $b:= concact($m/@bib, "XML.xml")
let $c = Sm/text() return
let $x:= document ($b)//library
for $y in document ($b)//library/component
where $y/cName = $c return
<signatures> {8y/service/signature}</signatures>
else

0

4.2.4 Conceiving the answer and presenting the
result:

3 Compoents Search Sstem - Wit stsvret Explorer CBK

- P

Components Search Inferface Component LaGenMatDouble : Signatures informatioms
Admis

Source
Begin End

Library Component Signatare

Thesawus terms: Fectsrgisr v+ | Saaech

Descriptons :
Lbnary: L
Component
Service :

Kerwords :

s FOCTE b e s L Mol R b ks

3] e e oy

Figure 5. Request execution result.

The request manager instancies the free variables
of the request “model” before transmitting the
request to the XQuery engine for its implementation.
The result of the implementation is an XML
document, which is polished with XLS and CSS

-104 -

style sheet of paper before presenting the final result
to the user (See Figure 5.).

5. Implementation of the prototype

The documentation software that we have used is
Doxygen [19]. It is an open source software which
permits to generate the documentation on the
components, starting from the source code of a
program C, C++, Java, and Objective C. Moreover,
if the comments are written in a precise syntax,
Doxygen will capture them in the documentation.
Doxygen provides the following information from
the sources: list of functions, dependence graph,
(what functions call for which?), list of data
structures, list of classes and hierarchy. The
documentation can be generated through several
formats: HTML, LaTeX, RTF, PostScript, and PDF.
For the time being, we have decided to generate
HTML documentation from C++ programs. As a
matter of fact, PSRep possesses some tools which
allow transforming HTML documents into formats
which are easier to analyze in order to extract the
metadata on the components.

5.1. The architecture of the prototype

The Figure 6. displays the system which permits
the management and the exploitation of the info-
component repository. It includes two parts: one part
allows the management of the info-component
repository, and another part deals with the search of
components.

Info-Comp t Repository M C

Search Modul

request result

l user T

User interface

Metadata
extraction
tool

Program
library

________________ 1 XQuery reduest Answer puilding
:building Y XSL + (SS

1
— 1
Index Semantic : : XQuery request
descriptor descriptor ' manager
L o= lo==at o |
Expert l

1
1
1
|
|
Info-component |
1
1
1
1
|

XQuery reiuest XM‘E result

execution

repository
generator

XQuery engine
Y

Infos-components Repository and Thesaurus

Figure 6. The architecture of the system.

5.1.1. Info-component repository manager: It

provides services for the analysis, extraction and

storage of metadata about components. It also allows
the creation of info-components.

e Extraction tool: It allows the semantic description
of a library and its components.

e Info-component repository generator: It allows
the automatic generation of an info-component
from the index and semantic description of a
library and its components.

5.1.2. Search module: 1t is in charge of the building
of requests, their implementation and the
presentation of the result to the user.

e User interface: it allows the computer to create an
XQuery request without knowing the XML
structure of the catalog. Its functions are: to
receive a request based on the terms of thesaurus
field; to have the result of the request into XML
of the XQuery request manager, to convert it into
HTML with XSL and CSS paper style, and
display it on the screen.

e XQuery request manager: Its role is to: (1)
translate a user request from its corresponding
initial form into XQuery before going to the
XQuery Engine; (2) receive the answer of Engine
XQuery request; (3) transform the results into
XML data; (4) Return the result in XML to the
interface user.

e XQuery engine: Its role is to carry out the
XQuery request and to deliver the XML result to
the XQuery request manager.

5.2. The interface of the prototype

The interface of the system, as in (Figure 7.), is
used by the administrator for the component catalog
and the info-component repository management.

- [afx

M PSRep : Components Management System

Fle Edit Run Catalog Help
Input Output
Library name Lapack+ id="Lapack++"> .Y
<nomB>Lapack++<fnomB> Y
Library path C1\PSRep|Bibliothe <uCPSRep\Biblictheques|LapackiLapackppl. Ta<furls
id="1"domaine="" sujet="" version="">
Documeniaionpth: - |C1PSRepiBibicite <nomC>LaBandFactDouble<fnomC>
. <fichierSrc>
[VIDocumentation productior: <nomFebfd hefnomF>
<aille>3.08Ko <faille>
<date>23:0704</date>
<urlF>C\PSRep\Bibliotheques\Lapack\Lapackpp1.1alinc|
udelbfd hefurlF>
<ffichierSre>
<senviceid="">
<nomS=LaBandFaciDoubles/nomS>
<signature>LaBandFactDouble () [inline]</signature>
<adiesse>
<debut>00047 </debut>
<fin>00054 <ffin>
<fichier=bfdh <ffichier>
¢/adresse>
<Jservice>
<senicaid="2"> W

Figure 7. Catalog system interface.

The development environment is essentially
based upon language Python [21] (for the extraction

-105 -

and the storage of metadata on the components),
Galax [20]: an open source implementation of the
language XQuery (for information search), language
PHP and Apache web server (for the creation and
management of website). The prototype that we have
developed has been tested with the following
libraries: Lapack++, MV++ and SparseLib++ (see
Table 1).

Table 1. Library number of components and

services.
. Number of Number of
Library .
components services
Lapack++ 36 753
MV++ 14 310
SparseLib++ 22 440

6. Conclusion

All along this paper, our objective was to show
how to calculate free components for reuse purpose.
To accomplish this task, we have proposed a system
of component catalog. This system is based on the
extraction of metadata which are contained in the
documentation on components. This documentation
has been generated by documentation software.
These metadata are stored in an info-component
repository. The search of component is performed by
a friendly interface conceived around XQuery
language. One prototype of the component
cataloguing has been developed and successfully
tested on MV++, Lapack++ and SparseLib++.
Forthcoming works will be about the improvement
of the search process by integrating an engine search
which permits the use of some keywords. It is
question of providing the users advanced tools which
are founded on XQuery request language, allowing
them to express request naturally in order to get
semantically pertinent answers.

6. References

[1] R.P. de Souza, M.N. Costa, and R.M.M. Braga,
"Software Components Reuse Through Web Search and
Retrieval", Journal of the Brazilian Computer Society,
vol.8 no.2, Campinas, Nov. 2002, pp 55-63.

[2] A. Hocine, P. Raffinat 200, Etude et prototypage d’un
systeme interactif de catalogage de composants, Rapport
Final, Convention IFP-UPPA, Décembre 2002.

[3] Projet ACCORD, "Assemblage de Composants par
Contrats en environnement Ouvert et Réparti”, juin 2002,
http://www.infres.enst.fr/projets/accord/lot1/lot_1.1-1.pdf.
[4] M. C. Lafaye, G. Louis, D. Mehira, "Systeme de
Recherche de Composants Logiciels, Application a la
Réutilisation en Synthese d’images", Congres
INFORSID’97, Toulouse, 10-13 juin 1997, pp. 601-621.
[5] "Dublin Core Metadata Initiative", http:/
dublincore.org/documents/.

[6] W3C XML, "Query, XQuery 1.0 and XPath 2.0 Full-
Text", http://www.w3.0org/TR/2004/WD-xquery-full-text-
20040709/.

[7] Lapack++, "Linear Algebra PACKage in C++",
http://math.nist.gov/lapack++/.

[8]: MV++, "Numerical Matrix/Vector Classes in C++",
http://math.nist.gov/mv++/.

[9] SparseLib++,"A Sparse Matrix Library in C++ for
High Performance Architectures", http://math.nist.gov/
sparselib++/.

[10] V. Maxville, J. Armarego, and C. Peng Lam.
"Intelligent Component Selection," Proceedings of the
28th Annual International Computer Software and
Applications Conference (COMPSAC'04), vol. 01 no. 1,
pp. 244-249, 28th 2004.

[11] A. Michail, and D. Notkin, "Assessing Software
Libraries by Browsing Similar Classes, Functions, and
Relationships", Proceedings of the 21st international
conference on Software engineering Los Angeles,
California, United States, 1999, pp. 463 — 472.

[12] R. Meling, E.J. Montgomery, "Storing and Retrieving
Software Comonents: A Component Description
Manager", Proceedings of ASWEC2000 -The Australian
Software Engineering Conference, IEEE CS Press, Los
Alamitos, California, April 28-30, pp. 107-117.

[13] O. Khayati, A. Conte, J.P. Giraudin, "Les systemes de
recherche de composants”, Systtme de composants
adaptables et extensible — 17 et 18 oct. Grenoble 2002, pp.
232-240 http://rangiroa.essi.fr/arcad/livrables/proceedings-
JC2002.pdf.

[14] Patrick Peccatte, "Métadonnées: une initiation Dublin
Core, IPTC, EXTF, RDF, XMP", http://
peccatte.karefil.com/software/Metadata.htm.

[15] AFNOR 1981, "Regles d’établissement des thésaurus
monolingues"”, AFNOR NF Z47-100.

[16] E. BRUNO, J. LE MAITRE et E. MURISASCO,
"Indexation et interrogation de photos de presse décrites en
MPEG-7 et stockées dans une base de données XML",
Ingénierie des systémes d'information (RSTD - ISI), vol. 7,
n° 5-6, 2002, pp. 169-186.

[17] K. M. BROU, "Le modele de représentation et de
Gestion Hypertextes des Concepts d’un Domaine dans le
Systeme CoDB-Web", Revue Rint (Réseau international
de néologie et de terminologie) N°19, 1999, pp. 89-100.
[18] D. Lucredio, A. F. do Prado, and E. S. de Almeida,
"A Survey on Software Components Search and Retrieval"
EUROMICRO, vol. 00, pp. 152-159, 30th 2004.

[19] Doxygen, "Documentation System for C++, C, Java,
Objective-C, Python, IDL" http://www.stack.nl/~dimitri/
doxygen/.

[20] Galax, "An open-source implementation of Xquery
1.0" http://www.galaxquery.org/.

[21] Python, "An interpreted interactive object-oriented
programming language" http://www.python.org/.

[22] ArgoUML, "A modeling tool that helps you do your
design using UML" http://argouml.tigris.org.

-106 -

