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Abstract 

 
In this paper, we propose a complete 2.5D and 3D 

human face acquisition framework based on a stereo 
sensor coupled with a structured lighting source. We 
aim to develop an accurate and low-cost solution 
dedicated to the 3D model-based face recognition 
techniques (FRT). In our approach, we first calibrate 
the stereo sensor in order to extract its optical 
characteristics and geometrical parameters (the offline 
phase). Second, epipolar geometry coupled with a 
projection of special structured light on a face (the 
online capture phase), improves the resolution of the 
stereo matching problem, by transforming it into a 
one-dimensional search problem and a sub-pixel 
features matching. Next, we apply our adapted and 
optimized dynamic programming algorithm to pairs of 
features which are already located in each scanline. 
Finally, 3D information is found by computing the 
intersection of optical rays coming from the pair of 
matched features. The final face model is produced by 
a pipeline of four steps: (a) Spline-based interpolation, 
(b) Partial models’ alignment then integration, (c) 
Mesh generation, and (d) Texture mapping. 
Furthermore, this paper presents an approach which 
evaluates the reconstruction techniques. We consider a 
scan from a laser scanner as “ground truth”, then we 
compute spatial deviation between it and the 
homologue reconstructed model, based on the well-
known Iterative Closest Point matching algorithm.1 
 

1. Introduction and motivation 

 
Over the past few decades, biometrics and 

particularly face detection, analysis, measurement and 
description have been applied widely to several 
applications such as recognition, video surveillance, 

                                                             
1 This study has been implemented on the Face-
Checker platform at LIRIS Lab., Centrale Lyon. 

access control, production of personal documents such 
as passport and national identity card, etc. As described 
in [1], most commercial face recognition technologies 
(FRT) suffer from two kinds of problems. The first one 
concerns inter-class similarity, for instance twins’ 
classes, fathers and sons’ classes. The second problem 
is the intra-class variations caused by significant 
changes in lighting conditions, pose variations (i.e. 
three-dimensional head orientation), and facial 
expressions.  

Current state-of-the-art in face recognition is rich in 
developed works which aim to resolve problems 
regarding this challenge. One paradigm to recognition 
is the 3D model-based techniques [2, 3, 4] in which the 
researchers exploit, in addition to textural end 
silhouette information, the three-dimensional shape of 
the face in order to mitigate some limitations. In 
general, the 3D faces of interest are saved in a library 
during an offline phase. During the online recognition 
phase, a single captured model of the face, present in 
the scene, is matched with the model library in order to 
find the identity and the pose of the person. This task 
presents an active area of research and focuses many 
biometric applications; however the true handicap is 
the non-availability of an efficient and, at the same 
time, a low-cost solution to acquire the face models. It 
is, moreover, the main goal of this paper which 
proposes a novel efficient and low-cost 3D acquisition 
solution dedicated to person recognition and 
authentication systems.  

The remainder of the paper is organized as follows: 
Section (2) presents the state-of-the-art in 3D 
acquisition techniques, particularly optical ones. 
Section (3) describes an overview of the proposed 
approach. In Section (4), we focus on the stereo 
matching strategy including structured light-based 
features localization and their matching. In Sections (5) 
and (6) we emphasize our pipeline of 2.5D and 3D face 
modeling. Section (7) presents a procedure which 
allows the measurement of the accuracy of our 
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reconstruction results. Finally, a conclusion and future 
work are presented in Section (8). 
 

2. Related work on 3D face photography 
 

Three-dimensional acquisition techniques have been 
applied in many research areas and industrial 
applications including robot vision, medical imaging, 
archeology, reverse engineering, and industrial quality 
control. Scanning human faces is notably one of the 
most important targets. A successful solution has 
immense potential applications for face animation in 
video games, face recognition and authentication, 
building statues of peoples, etc. In this section we 
briefly review some optical approaches focusing on 
recovering the three-dimensional object geometry 
particularly human faces. In this category of methods, 
four potential classes are proposed: laser scanning, 
coded light range digitizers, silhouette-based methods, 
and multi-image/motion based approaches.  

The techniques in which special lights are used in 
order to extract dimensional information, called active 
methods, consist of two categories: First, 3D non-
contact scanners such as Minolta [6] which are based 
on laser triangulation. Here, laser rays coming out of a 
light source hit the object and are captured by a camera 
in different angles using a rotating mirror. These 
devices take a short time to capture highly accurate 
reconstructions. However, they are expensive and their 
outputs are usually noisy requiring manual editing. In 
addition, it suffers from the surface’s reflection which 
generates small unreal variations in the surface of the 
scanned object. The second solution is a structured-
light based approach in which special light is directed 
onto the object to be scanned, such as the techniques 
presented in [13] and [14]. This process helps to solve 
the correspondence problem, which is a difficult task in 
passive methods. In the case of projecting one pattern 
of light on the measuring scene, depth information will 
be extracted by analyzing the pattern deformations. In 
the other case where a set of light patterns is projected, 
the extraction of the codeword assigned to each pixel 
in the images allows the formation of the range image. 
The major limitation of the active techniques is the 
devices’ restriction, so need to acquire and register a 
set of partial models in order to build the entire models.  

In the second category of approaches, known as 
passive methods, photogrammetry is the most active 
research area in which various algorithms are 
proposed. In the classical multi-images based sensors 
which acquire simultaneously two [7, 10] or a set of 
images [8, 9], 3D information which is ambiguous in 
only one optical ray, can be found by triangulation (i.e. 
the intersection of multiple optical rays going from 

projection centers of the cameras and passing through 
corresponding features in the images). The hardest 
problem regarding these approaches is the matching 
problem and the accuracy of the reconstructed models 
depends on the precision of this process. In the second 
sub-category of passive methods, the data source is a 
video sequence and the Structure From Motion 
algorithm is the most used approach to estimate image 
disparity. For instance, the authors in [11] and [12] use 
SFM algorithms which are enhanced with a generic 
model as an initial solution. In their papers, they 
present as results an approximate face model. 

There are also other solutions in literature such as 
silhouette extraction-based methods [15], photometric 
methods [16] and face from orthogonal views methods 
[17] which produces an approximation of a real object. 
A combination of some methods can be significant 
such as work presented in [18], in which the authors 
combine a shape from a silhouette-based technique 
which provides a coarse 3D initial model with a multi-
stereo carving technique. This technique is used only 
for reconstructing static objects. 

 

3. Overview of the proposed approach 
 

The proposed approach uses one binocular sensor 
assisted by a structured lighting source. This helps to 
resolve the matching process with sub-pixel precision 
then finds 3D dimensional points by optical 
triangulation. In this paper we briefly describe the 
basic approach used for range image formation which 
is already presented in [5], and we emphasize 
additional steps which focus on producing the entire 
face model and the accuracy evaluation method and 
results. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure1. Principal of view changing for complete 3D 
face acquisition 

 
Figure 1 illustrates the basic idea of changing the 

sensor’s viewpoint (or head orientation) in order to 
acquire different parts of the face to be scanned. After 
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acquisition of the range images by applying the 
photography process three times in respectively, frontal 
view, left profile view and right profile view, we aim 
to register the obtained partial models using the 
Iterative Closet Point algorithm (as a fine alignment) 
assisted by a manual initialization (as a coarse 
alignment). The rigid transformation which is the result 
of the previous stage is applied to partial models in 
order to blend them considering the frontal model as 
the reference view. Finally, a step of texture mapping 
onto the reconstructed shape achieves the acquisition 
process and adds the true appearance to the face. 

 

 
Figure2. Pipeline of our approach for 3D face 

reconstruction 
 
Figure 2 describes the basic and the additional 

processes in our framework of 2.5D then 3D human 
face photography. The sections below describe major 
stages and contributions in this work; in other words 
the Spline-based face modeling and the novel step to 
perform sub-pixel features localization and matching. 
In the end, the paper addresses the depth accuracy 
measuring problem and a novel technique is proposed 
where the “ground truth” data are acquired by a 3D 
laser-based scanner. 
 

4. Stereo matching strategy 
 

The key step in the stereo-based approaches is the 
matching problem which consists of finding the 
correspondence features between left and right images. 
In our basic approach, after sensor calibration, we 
rectify images by applying epipolar geometry 
transformation. This operation reduces the complexity 
of the correspondence problem from a bi-dimensional 
to a one-dimensional search problem. In fact, matched 
points have necessarily the same Y-coordinate, in 

rectified images. But, the problem is not yet totally 
resolved and we must sweep for each feature point, in 
the left image, the conjugated scanline in the right 
image in order to find the corresponding feature. To 
achieve this, we propose to match only a set of features 
which are discriminated by projecting, successively, 
negative and positive patterns of light on the face. This 
process allows us to localize some feature points with 
sub-pixel precision, and so improves precision of the 
matching and the 3D point’s localization stages, see 
figure 3.  

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure3. Acquisition and sub-pixel stripe edge 

detection processes 
 
The second step in our matching strategy is to join 

the sets of features which are detected in conjugated 
rectified scanlines. We are choosing to perform the 
principal of dynamic programming which is a very 
useful optimization technique for sequence matching 
and alignment. It aims to solve an N-stage decision 
process as N single-stage processes.  

The DP-based matching approach allows us to find 
the optimal solution for each pair of conjugated 
scanlines separately by computing similarity matrix 
between features. The monotonic ordering constraint 
lets the global cost function be determined as the 
minimum cost path through a disparity space image. 
Here, the cost of the optimal path is the sum of the 
costs of the partial paths obtained recursively (1). We 
define cost function as a matrix where lines and 
columns are indexed by left and right features for each 
scanline (figure 4 (a)), as done by Ohta and Kanade, in 
[20], on natural edges. 
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Occlusions, which are the main complications in the 
matching problem, are modeled by assigning a group 
of pixels in one image to a single pixel in a second 
image and penalizing the solution by an occlusion cost 
occ. The term, score(qi,ei), is a correlation 
measurement between features qi and ei, respectively in 
left and right images (2). 
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The optimized DP algorithm calculates only the 

diagonal terms of the similarity matrix. 
 

5. 2.5D face model reconstruction  

 

For any viewpoint and after feature matching 
process, we triangulate by finding intersection points, 
in space, of the optical rays each one coming from the 
camera’s projection center. Once this is done, we mesh 
the obtained points in order to connect them and to 
build a 3D surface. Before that, we interpolate between 
the triangulated points by applying the cubic spline 
models in order to increase the points’ resolution.  
 

 
 

Figure5. Optical triangulation and cubic-spline 
based interpolation for one reconstructed scanline 
 
Figure 5 represents reconstructed features in pair of 

conjugated scanlines and the interpolated points. This 
improves, as illustrated, the model’s resolution and 
draws the partial face model.  

In this field, many data interpolation methods exist 
in literature such as, Linear, Polynomial, Lagrange, 
Hermit, Spline, etc. In our approach, we use cubic 
spline functions [19] which are very popular 
interpolation models. These functions are made up of a 
sequence of cubic polynomials across each interval of 
the data set curves that meet at the given data points 
with continuous first and second derivatives (3). In our 
case, cubic spline interpolation is significantly better 
than others for relatively smooth data such as faces, as 
presented in figure 6. 
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Figure6. Interpolation and mesh processes 
 

Having the 3D interpolated point set (S={p1, p2,…, 
pn}), we generate one mesh between them in order to 
obtain a coherent shape. For that, we consider the 
Delaunay triangulation/Voronoi diagram duality based 
approach, amongst the most useful data structures of 
computational geometry. The main idea of this 
algorithm is based on the Voronoi diagram which 
partitions the plane into convex regions, one per point 
or site. Given the Voronoi diagram of a set of sites, the 
Delaunay triangulation of sites can be obtained as 
follows: given a set S of n distinct points in R2, the 
Voronoi diagram is the partition of R2 into n polyhedral 

regions Vo(p), p ∈  S. Each region Vo(p), called the 
Voronoi cell of p, is defined as the set of points in R2 
which are closer to p than to any other points in S, or 
more precisely: 

{ }pSqq)dist(x,p)/dist(x,RxVo(p) 2 −∈∀≤∈= ,where 

dist is the Euclidean distance function. 
The convex hull conv(nb(S,v)) of the nearest 

neighbor set of a Voronoi vertex V is called the 
Delaunay cell of V. The Delaunay complex (or 
triangulation) of S is a partition of the convex hull 
conv(S) into the Delaunay cells of Voronoi vertices 
together with their faces. 

This mesh generation step based on Delaunay 
triangulation, applied to the projection in (x, y) plan of 
the space points, gives a 2.5D face model as shown in 
figure 6. It remains to align reconstructed partial 
models, merge them, and then map texture in order to 
achieve the reconstruction process. The following 
sections describe these additional stapes for entire face 
modeling. 
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6. 3D face modeling from 2.5D models 
 

In order to perform face recognition from any 
viewpoint, complete 3D model representations are 
indispensable in the model gallery. In this section we 
focus, consequently on building an entire three-
dimensional face model from partial scans. First, three 
scans, from respectively three viewpoints, are provided 
by the basic approach. Second, a complete 3D model is 
built by aligning and integrating these obtained partial 
models. The first task is to register these 2.5D models 
in order to align and transform them for the merging 
step. Our registration algorithm is based on the well-
known Iterative Closet Point (ICP) algorithm [21] 
which is an iterative procedure minimizing the mean 
square error (MSE) between points in one view and the 
closest points, respectively, in the other. At each 
iteration of the algorithm, the geometric transformation 
that best aligns the two partial models is calculated. 

Intuitively, starting from the two sets of points P = {p
i
}, 

as a reference data, and X = {yi}, as a test data, the goal 

is to find the rigid transformation (R,t) which 
minimizes the distance between X and P. ICP consists 
of determining for each point pi of the reference set P 
the nearest point in the second set X within the 
meaning of the Euclidean distance. The rigid 
transformation (R,T) minimizing a least square 
criterion (4) is calculated and applied to the each point 
of P. 
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This procedure is alternated and iterated until 
convergence (i.e. stability of the minimal error). Indeed, 
total transformation (R,t) is updated in an incremental 
way as follows:  for each iteration k of the algorithm, 

R=RkR and t=t+tk, The criterion to be minimized in the 

iteration k becomes (5): 
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The ICP algorithm presented above always 
converges monotonically to a local minimum [21]. But, 
we can hope for a convergence to global minimum if 
initialization is good. For this reason, we perform a 
coarse registration procedure, before the fine one. The 
coarse alignment consists of finding correspondences 
between distinctive features that may be present in the 
overlapping area. The goal of this initialization is to 
find a set of approximate registration transformations. 
Figure 7 illustrates different stages of the registration 
process. For the three 2.5D scans we perform, two by 
two, the registration procedure (the frontal scan is 
considered as the reference data). We present also the 
statistical errors in each registration step. Firstly, the 

registration of left profile scan and frontal scan outputs 
as mean error equal to 0.49 mm (0.3%) and standard 
deviation equal to 0.31 mm. Then, the registration of 
right scan and the frontal scan presents 0.43 mm 
(0.27%) as mean error and 0.28 mm as standard 
deviation. The color maps of error deviations presented 
in figure7 show the spatial distances. Once the 
alignment is done, a mesh integrating procedure is 
performed in order to build a unique mesh of the 3D 
face model. We can show, in figure 7, that the final 
model presents a coherent 3D shape. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure7. Registration and fusion processes 

 

 
Figure8. Texture mapping into 3D face shape 

 
Having a 3D face shape, it remains to give realism 

by mapping the appearance image which is acquired at 
the same time with the frontal range image. Indeed, in 
computer graphics, texture mapping refers to the 
technique where an image is pasted onto a three-
dimensional surface. This technique can significantly 
increase the realism of a scene without increasing the 
complexity. This procedure is performed by warping 
texture image to a 3D surface grid using interpolation. 
In order to guarantee an excellent warping, we 
manually select some feature points in the texture 
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image and corresponding feature points in the 3D face 
shape to give pasted points. Figure 8 illustrates this 
process: 

 

7. Evaluation and Accuracy measurement 
 

The main object of our approach is to develop a 
2.5D and 3D face photography technique which is, at 
the same time, accurate and solves the high-cost 
problem of the 3D acquisition techniques. In this 
section, we detail the sources of error in our 3D face 
measurement technique. Then, we present some 
evaluation results obtained by computation of a global 
spatial deviation between reference data (from a 
scanner) and measured data (from our sensor). 

As described at the beginning of this report, the 
basic system in our platform is a binocular sensor, 
where 3D reconstruction goes through some stages 
which are calibration, matching and triangulation. As is 
known, the accuracy of this sensor depends on these 
stages particularly finding correspondences. For that, 
we are choosing to project a kind of special structured 
light on a face in order to distinguish, with sub-pixel 
precision, two sets of features in the stereo images. 
This process, coupled with the application of our 
dynamic programming algorithm on these located 
features and cubic-spline based interpolation, makes up 
our main contribution.  

The accuracy of this kind of sensor depends also on 
two other important factors. The first one is the 
distance from the sensor to the object to be scanned (i.e. 
depth Z). The second source factor is the distance 
between the stereo cameras (i.e. baseline B). 
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The equation (6(b)) is the derivation of the classical 
formula of depth from stereo (6(a)) after rectification. 
Here, f is the focal length and d is the disparity 
(displacement of correspondent points). Here, the 
depth error is proportional to the square of depth and 
inversely proportional to the baseline. Consequently, 
the nearer the object is, more accurate is the 
reconstruction and the shorter the baseline is, the less 
accurate is the triangulation. Currently, we are working 
to find the optimal parameters to improve our results.     

 In order to evaluate our acquisition technique, we 
consider models, which are reconstructed from a laser 
triangulation-based scanner, as reference data or 
“ground truth”. The evaluation procedure consists of 
digitizing one face using our technique and acquiring 
the same face by the scanner both with neutral 
expressions. Then, we compute spatial deviation 
between the two sets of points. In this procedure we 
use, after manual coarse alignment, the Iterative 

Closest Point algorithm which minimizes the global 
distance between them. Figure 9 shows the two data 
sets and the two distribution curves: the signed and the 
absolute deviations.  

 

 
Figure9. Experimental results and validation procedure 

 
Figure 9 shows also mapped colors which represent 

error values. In the absolute deviation map, the blue 
color corresponds to the small errors and the red color 
represents the significant errors. In contrast, the signed 
deviation map represents maximum errors by saturated 
colors. We give also the mean error and the standard 
deviation values for each kind of deviation. Here, the 
mean depth error presented by our approach represents 
1.65% (i.e. Mean error/[Zmax-Zmin]) and standard 
deviation as 1.62 mm. The curve of the signed 
distribution has a unimodal silhouette centered at -
0.086 mm and 2.11 mm as a standard deviation. In this 
measuring error procedure, we must take into account 
some considerations, especially errors from laser 
scanner acquisitions and ICP-based distance 
calculation. 

 

8. Conclusion 
 

We have presented in this paper a complete low-
cost and accurate solution for 2.5D and 3D face 
acquisition using a stereo structured-light coupled 

Deviation/Type    Mean error Standard deviation 

signed -0.086  2.11 

absolute 2.66 (1.65%) 1.62  

Absolute deviation 

Signed deviation 

Initialisation: (a) our model (b) scanner model 

(a) 

(b) 
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technique. The sensor is first calibrated and parameters 
are extracted, especially baseline and focal length. 
Second, epipolar geometry is also computed in order to 
reduce the complexity of the correspondence search 
problem. Then, the projection of normal and inverse 
structured-light provides a set of pairs with sub-pixel 
precision. The global matching optimization is 
performed by a dynamic programming algorithm for 
each pair of the scanlines independently. Finally, depth 
is obtained by a pipeline of light-ray intersections 
identification, points’ interpolation based on cubic 
spline models, points’ meshing and texture mapping. 
This work presents a novel framework in which we 
associate existing techniques to new ones for face 
reconstruction. The main contributions are first in the 
stereo matching problem where feature extraction 
descends to less than the pixel unit. The second 
contribution concerns face modeling by using cubic 
spline interpolation in the X-direction where the Y-
direction is densely acquired. This operation conserves 
details obtained from original points and ameliorates 
face resolution by the introduction of new points 
between original points.        
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