
Reduction of the number of spectral bands in LANDSAT images with 

projection methods: Pertinence of the resulting information 

Journaux L., Foucherot I. & Gouton P. 

Laboratoire LE2I UMR-CNRS 5158 

Université de Bourgogne - Faculté des Sciences - Aile de l'ingénieur 

BP 47870 - 21078 DIJON Cedex FRANCE 

ljourn@u-bourgogne.fr

Abstract

This paper describes applications of linear and 

nonlinear projection methods, in order to obtain a 
reduction of the number of spectral bands in LANDSAT 

multispectral images.  

We present Curvilinear Component Analysis (CCA, 
nonlinear method) and an optimisation of it based on 

the use of Principal Component Analysis (PCA, linear 
method).  

In order to evaluate the pertinence of the information 

kept by each transformation, we then apply 
segmentation on the transformed and original images. 

This processing allows us to show that the structure 

(the landscape organization) of the image is preserved 
by each transformation. 

This paper tends to show several results : CCA is an 

improvement for dimensions reduction of multispectral 
images ; CCA is really a nonlinear extension of PCA ; 

CCA optimisation through PCA (called CCAinitPCA) 

allows a reduction of the calculations, providing a 
result identical to that of CCA. 

1. Introduction 

To analyse natural heritage, ecologists study the 

relations between fauna distribution and landscape 

features [1]. They are particularly interested in the 

relationship between fauna and flora along the rivers : 

There, environmental conditions vary gradually, which 

makes them interesting models for the study of 

ecological gradients [2]. 

Satellite multispectral images seem to be nowadays 

the most encouraging tools for landcover analysis. This 

kind of data provides the relevant way to describe 

faunistic habitats in space and time through usable 

variables in multivariate analysis. For example, a 

segmentation of such an image allows to detect the 

limits of the different areas of the landscape. 

The satellite sensors used nowadays supply images 

with a large number of spectral bands. This set of data 

could be represented in a vectorial space with a number 

of dimensions corresponding to the number of spectral 

bands [3, 4].  

The main problem of multispectral images is the 

considerable quantity of data contained in them. This 

makes the analysis of such images very heavy. So, the 

reduction of the vectorial space, that is to say, the 

reduction of the number of spectral bands of the 

collected data, is a necessary preprocessing step before 

multispectral image analysis. It would present several 

advantages such as data compression and 

simplification, that will allow to maximize automatic 

processes, and reduction of the run-time during the 

segmentation, classification or fusion of images. 

The problem is to reduce the quantity of data while 

keeping sufficient information for structural and 

informational analysis of the image. 

Some methods make it possible to reduce the 

quantity of data while preserving their intrinsic 

properties.

The best known is Principal Component Analysis 

(PCA), also called "Hotelling transform" or "Karhunen-

Loëve transform" [5, 6]. It consists in a linear 

transformation of the vectorial space that leads to the 

reduction of the number of spectral bands. The resulting 

image is represented by a set of new bands in which the 

quantity of information decreases from the first band to 

the last. This well-known method has several 

advantages, among which data decorrelation and 

compression. 

Other linear transformation methods, such as 

Independent Component Analysis [7, 8] or the 

Projection Pursuit introduced by Friedman and Tukey 

[9, 10], are also frequently used in this context [3]. 

Unfortunately, these methods only highlight the linear 

relations between the spectral bands at the expense of 

the nonlinear relations. Therefore, their exploitation is 

limited. 

Nonlinear projection methods, such as "Sammon's 

mapping" [11], or "Multidimensional Scaling" [12] 

require prohibitive run-times and the convergence of 

their algorithms is not certain. 

A new nonlinear projection method, called 

Curvilinear Component Analysis (CCA) [13], is 

interesting. Used until now in several domains such as 

time series prediction [14], this method has recently 

been used for hyperspectral image processing [3]. 

In this article we compare various multidimensional 

projection methods intended to reduce the quantity of 

data in satellite multispectral images, while keeping the 

2-9525435-0 © IEEE SITIS 2005                                - 64 -



necessary and sufficient information for segmentation 

or classification. 

Section 2 of the paper contains a short presentation of 

CCA and of an optimization, called CCAinitPCA, that 

we propose in order to transform LANDSAT images 

into 3-band images. 

In section 3, we show on an example the redundancy 

of information between the spectral bands of a 

LANDSAT image and then explain how to define the 

sufficient number of bands to be retained as output of 

the nonlinear processing. 

In section 4, we present our experiment and comment 

its results. We apply three projection methods (PCA, 

CCA and CCAinitPCA) on LANDSAT images and 

compare the reduced images to the initial one in term of 

relevance and conservation of information. 

2. Nonlinear methods 

The principle of CCA is to reproduce the topology of 

the initial set of data from a space 
n

into a subspace 
p

( p n) , without constraining statically the 

configuration of the topology. It's an automatic auto-

adaptation to the real shape of the scatter of points in 

the vectorial space. In an image, the topology is defined 

by the euclidian distances between all pixels (all pairs 

of vectors of the original data). Thus, CCA tries to find 

all new vectors in the new subspace 
p

 reproducing 

p
the topology of the vectors of 

n
into . The 

mathematical aim of CCA is to minimize the following 

error function which characterizes the topology 

between initial and final projection space: 

1 n
( ij

p
)ECCA

2
(dij dij

p
)
2

F  d  

i j,(i j ) 

with:  

dij
n

: Euclidian distances between the vectors xi  and 

nx j in the original space 

d
p

ij : Euclidian distances between the vectors xi  and 

x j in the projection subspace p

F : [0,1]  , Decreasing function of dij
p

, allows 

the local topology to be favoured with respect to the 
global topology 

We propose here an optimization of CCA, adapted to 
multispectral images, combines PCA and CCA. This 

method is called CCAinitPCA [15]. 
The principle of PCA is to determine a vectorial 

subspace (whose number of dimensions is lower than in 

the original space) in which the distribution of 
observations is preserved at best. The resulting set of 

points is then an optimized linear projection of the 

initial one in a reduced subspace. It is obvious that the 
result of PCA is close to the result of CCA. 

In practice, the projection of the points in the 

subspace p  resulting from CCA is randomly 
initiated. In CCAinitPCA, the random initialized matrix 

is replaced by the matrix of the main components 

resulting from PCA. 

3. The satellite images 

3.1. Spectral bands 

The images used in this study have been provided by 

the French Institute of the Environment (I.F.E.N). They 
are multispectral images shot by the LANDSAT 7 

satellite in 2001. The spatial resolution of the images is 

30 meters. It includes 7 spectral bands and a 
panchromatic band. More details could be found in 

[15].  
From satellite images, we extracted 40 64-by-64-

pixel-images. We have chosen this size in order to 

respect the work scale of the avian population. 
Moreover, this choice allows us to obtain tolerable 

computing times during the processing. 

3.2. Information redundancy 

A calculation of correlation coefficients between 
each spectral band on LANDSAT multispectral images 

shows that they are highly redundant. To reduce the 

number of bands, we need an "a priori" knowledge of 
the "whole dimension" of the initial projection space. In 

other words, we have to evaluate the real informative 

dimension of the data in order to preserve the maximum 
of useful information during the projection into the new 

subspace. 

This dimension is called the intrinsic dimension of 
the data, and can be defined as the number of minimum 

freedom degrees of the initial space projection [13]. 
The estimation of this intrinsic dimension is thus very 

important if we don't want to lose too much information 

3.3. Estimation of the intrinsic dimension 

Several methods can be used to estimate the intrinsic 

dimension of our multispectral images like fractal 
dimensions[16]. Here we use local eigenvalues [17] . 

The intrinsic dimension is generally lower than the 
dimension of the initial set of data, corresponding here 

to the number of spectral bands. We estimated the 

intrinsic dimension of the Landsat 7 images by 
applying Local Linear Transform (LLT) [17] also 

called method of local eigenvalues.  

The Local Linear Transform considers the 
local linear relations between the spectral bands. The 

LLT allows to study the local variability of the data (via 

a mobile mask) and to extract local intrinsic dimension 

( pi
) from each zone via the extraction of the local 

eigenvalues of the various covariance matrixes. The 

intrinsic dimension ( p ) of the initial projection can be 

evaluated by calculating the average of local 

dimensions ( pi
) according to the following formula: 

                               - 65 -



1 N

p pi
N i 1

According to this method, the intrinsic 

dimension of the data resulting from the multispectral 

images was estimated at p 3 . So CCA will project 

the image into a 3-dimensional subspace. 

4. Experiment results 

We have applied PCA, CCA and CCAinitPCA to 

LANDSAT images and so obtained 3-dimensional new 

images. Figure 1 shows the 3 bands resulting from the 
same image after each transformation. On the new 

bands we can see regions that correspond to areas of the 

original image. However, these new components have 
no signification compared with the original spectral 

definition. 

PCA

  Band 1   Band 2   Band 3 

CCA  

  Band 1   Band 2   Band 3 

CCAinitPCA 

  Band 1   Band 2   Band 3 

Figure 1: Resulting bands in images after 
reducing the number of dimensions  

The images obtained with the three methods are 
different. We shall now compare them from different 

angles. 

We shall first compare the quality of the projection 
between CCA and CCAinitPCA. 

We shall then compare the images obtained from 

the various transformations, and thus evaluate the 
quality of the transformations. We have chosen two 

approaches : The first approach consists in a statistical 

analysis of the resulting images. The second approach 
is a segmentation of the images by unsupervised 

classification. Thus we shall show that the structure of 

landscape occupation is preserved by each 
transformation. We shall then carry out a comparison of 

the computing times of each algorithm. 
Finally, we shall compare convergences of CCA 

and CCAinitPCA algorithms. 

4.1. Evaluation of the projection quality 

The projection quality of CCA and CCAinitPCA can 

be evaluated by plotting the "dy-dx" representation 

proposed by Demartines and Hérault [13]. 
"dy-dx" projection represents the joint distribution of 

d n
and d p

 for each pair of vectors. In such aij ij

representation the points close to the origin correspond 

to local topology while the distant points correspond to 

global topology. If the topology is respected, all the 
points are concentrated along the y=x line. While there 

are points outside of the y=x line, CCA needs an other 
iteration. When all the points are along the y=x line, the 

initial topology of the vectors is found again and CCA 

is successful. 
The "dy-dx" representation is also interesting to 

estimate the number of necessary iterations for the 

convergence of CCA. Figure 2 shows the "dy-dx" 
representations at different stages of CCA and 

CCAinitPCA.

CCA CCAinitPCA 
(a)   1 iteration    (d) 

(b)     5 iterations   (e) 

(c)   10 iterations    (f ) 

Figure 2:"dy-dx" representation of CCA (a, b, 
c) and of CCAinitPCA (d, e, f). One iteration 

corresponds to an iteration for each point that 
is to say (64)² = 4096 iterations. 

We can see on this figure (figure 2 c, f) that CCA and 

CCAinitPCA converge towards the same results after 

10 iterations. However, we can note that, after the first 
iteration, the projection of the points from CCAinitPCA 

is more concentrated along the y=x axis than the 

projection of the points from CCA. This tends to 
confirm that the use of PCA matrix for the initialization 

of ACC corresponds to an improvement of CCA. 
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4.2. Statistical analysis of images 

In order to evaluate the differences between resulting 
images, we have calculated a correlation coefficient 

between the resulting bands (all bands, all methods) 

(table 1). 

The analysis of the inter-band correlation coefficients 

shows three main facts:High correlation between first 
band of PCA, first band of CCA and first band of 

CCAinitPCA.

Low correlation between second band of PCA and 
second band of CCA or CCAinitPCA. We can observe 

the same phenomenon with the third bands. 

These two points show that, for the first bands, the 

result of PCA is close to the result of CCA and 
CCAinitPCA and CCA is really a nonlinear extension 

of PCA. 

High correlation between the second band of CCA and 
the second band of CCAinitPCA (same observation 

with the third bands of these methods).This allows us to 

prove that the initialization of CCA by the PCA matrix 
leads to a result equivalent to the result obtained by 

CCA initialized at random. Moreover, this method 

offers two advantages: a faster convergence (graphic 1) 
and a reduction of calculations and manipulations of 

data, so a reduction of run-time. 

Method PCA CCA CCA init PCA 

Bands 1 2 3 1 2 3 1 2 3

1 1

2 1

3 1

1 1

2 1

3 1

1 1

2 1

3 1

0,00004 0,00110 0,98187 0,81070 0,01990 0,98701 0,94614 0,48880 

0,00004 0,00228 0,18376 0,56869 0,95644 0,15501 0,07143 0,87074 

0,00110 0,00228 0,02357 0,08374 0,19446 0,03626 0,24229 0,04712 

0,98187 0,18376 0,02357 0,68552 0,18310 0,94011 0,94582 0,63937 

0,81070 0,56869 0,08374 0,68552 0,48841 0,89022 0,71659 0,09668 

0,01990 0,95644 0,19446 0,18310 0,48841 0,12424 0,06409 0,84870 

0,98701 0,15501 0,03626 0,94011 0,89022 0,12424 0,91031 0,34946 

0,94614 0,07143 0,24229 0,94582 0,71659 0,06409 0,91031 0,51060 

CCAinitPCA 0,48880 0,87074 0,04712 0,63937 0,09668 0,84870 0,34946 0,51060 

PCA

CCA 

Table 1: coefficients of correlation between every new spectral band according to three methods  
(with a grey background, the coefficients with a correlation higher than 50 %)  

4.3. Analysis by segmentation 

To estimate the quality of the different 

transformations, we have applied a segmentation on 

the initial and reduced images. We have chosen an 
unsupervised method of classification usually applied 

in remote sensing: The method of aggregation around 

mobile centres called K-means method [18, 19].We 
applied the k-means method to the resulting images 

from each reduction method and to the original 

Landsat image (8 bands). The goal was to compare the 
segmented images and so to see if the transformations 

preserve the space structure of the image. In other 

words, we wanted to know if our transformations 
enable us to preserve the space configuration of the 

different zones of the landscape in spite of the 
reduction of dimensions. We arbitrarily fixed the 

number of classes at 9 for each image (9 different 

kinds of landscape). Figure 3 shows the classification 
results.

The observation of the segmented images obtained 
by the k-means method shows several results. 

The first one is the conservation of the space 

organization of the image. Indeed, for each 
transformation method and more particularly for the 

nonlinear methods (d and e), the space organization 

and the geometry of the different zones of the original 
image are respected. This tends to show that the 

transformations by CCA (d) and CCAinitPCA (e) 

preserve the space organization of the various 

elements constituting the landscape in the original 

image (a).  
Moreover, the comparison of the segmented images 

resulting from CCA (d) and CCAinitPCA (e) shows 
that the processing leads to the same results. This 

comparison proves that the initialization of CCA by 

PCA does converge towards the same result. 

(a) (b) (c) 

(d) (e)

Figure 3: Segmented images obtained by 
unsupervised classification on (a) Original 
image (8 bands), (c) PCA image, (d) CCA 
image, (e) CCAinitPCA image. Image (b) is the 
representation of the initial image in the RGB 
space. 

The second result constitutes the main interest of the 
reduction of dimensions in multispectral images. 
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Indeed, the segmentation of the initial 8-band image 
leads to an over-segmentation, in particular in textured From the analysis by segmentation, we draw the 

zones. This could be explained by the information following conclusions:  

redundancy between the various bands of the Landsat 
image. On the reduced images, over-segmentation is (a) (b)   (c) 

that the reduction of 

to only the essential 

noise better

(a) (b) (c) 

the especially with the nonlinear 

(a) (b) 

CCA image. 

CCA and CCAinitPCA preserve sufficient 

realize.

its robustness. Actually, 

CCAE

lower. This tends to show

dimensions allows keep 
information of the image  

The original color image (figure 4a) enables us to 
compare the quality of the segmentation on the 

reduced images. On the image resulting from PCA 

(figure 4b), several different parcels are merged in a 
same region by the segmentation. On the images 

resulting from the nonlinear methods (figure 4c) the 

different parcels are better differentiated.  

Moreover, the image resulting from PCA leads to an 

over-segmentation in the textured zones (figure 4 b) 
while the images resulting from the nonlinear methods 

smooth the giving the segmentation a 
quality (figure 4 c).  

Figure 4: (a) color image, (b) segmented PCA 
image, (c) segmented CCAinitPCA image. 

The segmentation of our images allowed us to 
observe unexpected and interesting results.  

Indeed, we can see that the same labels (here, the 
same color of regions) are associated to the same 

kinds of landscape (Figure 5). This was not obvious at 

beginning, 
transformation methods. 

Figure 5: (a) color image, (b) segmented 

Figure 6: (a) color image, (b) PCA image, (c) 

All methods preserve  the spatial organization of the 
landscape. 

information (more than PCA) to recognize the 
different kinds of landscape in reduced images 

4.4. Algorithmic convergence 

The preliminary results are encouraging, but there 

are important improvements to The main 
difficulties concern the speed of the convergence and 

during CCA, the 

minimization of the function is realized with a 

method of stochastic gradient descent. This method is 
not optimal because it is a quasi-Newton method of 

the first order [20]. 

Graphic 1: Convergences obtained according 
to CCA and CCAinitPCA; the convergence is 

faster for CCAinitPCA method. 

To validate our transformation method, we have 

used the stockastic gradient descent described by 
Demartines [13], supposed to avoid the algorithmic 

problem of being blocked in a local minimum. At this 

point in our work, about 65 % of the gradient descent 
succeeds in converging towards a global minimum, 

image resulting from CCAinitPCA. 

Finally, we can observe areas with pond labels in 

the segmented images resulting from the nonlinear 

methods (Figure 6). These areas do not appear on the 
segmented image resulting from the PCA image. 

Verification at the site has revealed the presence of 

ponds under vegetable cover. This enables us to 
consolidate the idea that CCA and CCAinitPCA make 

it possible to reduce considerably the quantity of data 

with a maximum preservation of information 
sometimes lost by the linear methods. 

verified by error estimation. 

To solve the problem of convergence, we envisage 
to use methods of second order gradient resolution, 

such as BFGS and the Levenberg-Marquart method 
[20]. These methods allow to tend towards a global 

minimum of the function while preserving the 

convergence speed. They ensure an algorithmic 
robustness by the Hessian control even if on the other 

hand, the computing time may increase significantly. 

5. Conclusion 
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The reduction of the number of dimensions is a 
necessary preprocessing for analyzing multispectral 

images. PCA, CCA and CCAinitPCA are 

transformation methods which allow to reduce the 
quantity of data while maintaining the best part of the 

objects properties contained in the image. Applying 

such a transformation on a multispectral image thus 
permits to facilitate its analysis. 

We have noticed that the use of the matrix 

originating from PCA to initiate CCA allows to 
improve the quality of the resulting images, because 

of bypassing vectorial quantization, and to reduce the 

time cost of the transformation. The images obtained 
by CCAinitPCA are very clearly close to the CCA 

images while reproducing the real topology of the 

data.
A segmentation of the reduced images enabled us to 

consider the relevance of the information kept by each 

transformation. We have observed that the nonlinear 
methods make it possible to decrease the quantity of 

data while keeping the capacity to reveal the main part 
of the properties of the objects contained in the image. 

They make it possible to extract the structure of the 

landscape, and thus to facilitate the classification or 
segmentation. Other classification methods should be 

tested to support these results. And the results 

obtained should be compared to the reality in order to 
evaluate the rate of "good" classification of the pixels.  

A convergence algorithm problem remains. To 

overcome it, we envisage to use the resolution 
gradient method of the second order in the error 

function. Even if its time cost is high, it should ensure 

convergence of the  function towards a global ECCA 

minimum and thus an optimal projection of the data in 
the reduced subspace. According to this results and in 

order to validate best our approach, we envisage to 

realize a program of compression/decompression for 
colors images processing. 
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