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Abstract 
 

Atmospheric perturbation is certainly the most 

important degradation when observing a scene 

horizontally at a distance of several kilometers. Because 

such images with short time exposure are expensive to 

obtain, they have to be simulated. The goal of this paper 

is to adapt simulation and restoration of images 

perturbated by atmospheric turbulence to the case of 

horizontal ground observation at a large distance and 

with a short exposure time. 

The first part of this paper is dedicated to the 

simulation process. First physical characteristics of 

atmospheric turbulence are exposed. Then the simulation 

algorithm is detailed and is adapted to both the 

anisoplanatic and isoplanatic cases. Simulations have 

been made with different ratios D/r0 corresponding to 

different turbulence intensity values at two wavelengths: 

one in the visible domain and another in the near 

infrared domain. Moreover the generation of image 

sequences where the temporal evolution of the 

atmospheric turbulence for a fixed scene (i.e. without 

camera motion) is taken into account, is studied. Indeed 

the temporal atmospheric turbulence evolution is a key 
element to be considered when recovering the original 

scene is desired. The method to obtain such a sequence is 

explained and an extract of simulated sequence is given 
and commented. 

In the second part of this paper, four different 

classical restoration methods have been tested on these 
image sets, which can only be used with single frames 

and need also some knowledge about the original image. 

To cope with this problem a more recent method has 
been tried: it is especially adapted to image sequences 

degraded by atmospheric turbulence. Comparisons have 

been made between the different obtained results. To 
conclude some perspectives are given. 

 

Introduction 
 

Atmospheric turbulence severely limits the resolution 

of ground-based cameras and telescopes. Astronomers 

have been the first confronted with this problem in the 

context of vertical line of sight. Techniques have been 

implemented to increase the resolution: interferometry, 

deconvolution, adaptive optics… 

Because of the temporal evolution of the turbulence, 

these techniques require the use of cameras working at 

very short exposure times in order to “freeze” the 

turbulence. Up to now this technology is expensive and 

is not affordable on a current basis for horizontal 

observation at a distance of several kilometers. So 

images have to be simulated, which is done in the first 

section. 

The first part of this section is dedicated to the 

simulation of single frames perturbated by atmospheric 

turbulence at two different wavelengths. In the second 

one, image sequence simulation is explained and an 

example is given. The second section deals with the 

comparison of different restoration methods and their 

suitability to such images. 

 

A. Simulation 
 

The algorithm of Nicolas Roddier [1] was used to 

generate the expected perturbations. To simulate an 

image perturbated by atmospheric turbulence, one has to 

generate a random turbulent wavefront which leads to an 

image corresponding to the transfer function of both the 

atmosphere and the camera at a given instant. Then one 
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just has to make a convolution with the scene image to 

obtain a turbulence degraded image. Image sequences 

have also been simulated taking into account the 

temporal evolution of atmospheric turbulence. 

 

A.1. Physical characteristics 
 

A.1.1. Wavefront perturbation. A plane wavefront is 

perturbated by the atmosphere. Only phase calculation is 

considered during the simulation of a perturbated 

wavefront. Indeed the effects of amplitude variations 

correspond to weak scintillation and are negligible 

compared to those of phase variations. Physically 

dephasing creates effects of blurring, local shifting, 

warping… 

Only the case of horizontal propagation in the lowest 

atmosphere layer is treated. The structure constant 2

NC  is 

approximately the same along the propagation path. The 

parameter 2

NC  is the amplitude of the refractive index 

fluctuations spectrum and it gives the influence of 

turbulence on optical propagation. It depends on local 

atmospheric conditions (temperature, pressure, humidity 

rate, wind speed, sun rate…), on the altitude, and on the 

day/night cycle. Near the ground it also depends on the 

ground itself (desert, continental, sea…). In this paper, a 

continental ground is considered. 2

NC  values range 

between 10-17 m-2/3 (weak turbulence) and 10-12 m-2/3 

(strong turbulence). The typical measured mean value of 
2

NC  is about 10-14 m-2/3 [2]. 

 

A.1.2. Ratio D/r0. In the literature atmospheric 

turbulence is often observed for a D/r0 about 3. D is the 

pupil diameter and r0 is the Fried parameter [3], i.e. the 

diameter of the wave coherence area or the maximal 

diameter of the pupil surface for which the perturbated 

wave can be considered as plane. 

Here are the values used in this paper. In the visible 

domain we took λ = 550 nm, L = 10 km and 2

NC  = 10-15 

m-2/3. According to Fried formula in the case of 

horizontal propagation [4] we have: 
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so r0 ≈ 4 cm. A pupil which diameter is about 12 cm 

would be well-adapted to observe atmospheric 
turbulence at this wavelength. 

In the near infrared domain (3-5 µm) we took λ = 4 

µm, L = 5 km and 2

NC  = 5.10-14 m-2/3, which gives r0 ≈ 

6.4 cm. A pupil which diameter is about 20 cm would be 

well-adapted to observe atmospheric turbulence with 

these parameters. 

For comparison images with different values of D/r0 

have been simulated which is equivalent to make vary 

the pupil size while fixing all other parameters. 

A.2. Generation of a turbulent wavefront 
 

To generate a wavefront degraded by atmospheric 

turbulence the algorithm of N. Roddier [1] begins by the 

decomposition of this wavefront phase onto the Zernike 

polynomials basis which is often used in astronomy. 

 

A.2.1. Zernike polynomials. The first orders correspond 

to the classical aberrations of an optical system. Zernike 

polynomials are defined on a disk which radius is unity, 

in each point r with polar coordinates (r, θ), by the 

following expressions: 
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Each Zernike polynomial is the product of an angular 

function by a radial polynomial )(rR m

n
. One can either 

use the order number j or the index m and n named 

respectively azimuthal frequency and radial order. These 

are entire numbers satisfying the relations: nm ≤  and n – 

|m| even. The order number j of a given polynomial is 

linked to m and n by the following relations: 
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with. ⎣ ⎦⋅  = Entire Part. 

On Figure 1 the aspect of the first simulated Zernike 

polynomials from Z1 (n=0, m=0) to Z21 (n=5, m=5) are 

shown.  Some polynomials are compared with classical 

optical aberrations. The polynomial Z4 (n=2, m=0) is the 

one which has the most influence on the image 

degradation. It takes the aspect of defocusing. The 

“piston” mode corresponds to the polynomial Z1 which is 

constant. 

 

A.2.2. Turbulent wavefront phase. The phase of a 

turbulent wavefront on a pupil, which radius is R, is 

given by: 

∑=
j

jj
R

r
Zar ),(),( θθϕ . 

The coefficients of the decomposition are the 

projections of the phase ϕ on the basis functions: 

∫=
S

a j

1 P(r) ϕ(r) Zj(r/R) dr, 

where P(r) is the transmission function of the pupil 
which radius is R and which surface is S. The simulation 

consists of randomly generating a set of coefficients {aj} 

in such a way that the obtained phase respects 

m ≠ 0 

m = 0 
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Kolmogorov statistics (it is the case with atmospheric 

turbulence). 

 
Figure 1. Comparison of the first Zernike 
polynomials with optical aberrations. 

 

Remark: To verify that the simulated phase written 

φ(r) follows Kolmogorov statistics one calculates the 

phase structure function which is the phase fluctuation 

variance between two points distant of ρ and defined by: 

Дφ(ρ) = < |φ (r + ρ) – φ (r)| 2 > , 

and it is compared to the theorical structure function of a 

phase which follows Kolmogorov statistics (Fig. 2), and 

whose expression is [3] : 

Дφ(ρ) = 6.88 (ρ /r0)
5/3, 

where ρ = | ρ | . 

 

 
Figure 2. Comparison between simulated 
and Kolmogorov phase structure functions 
near the pupil center (D = pupil diameter): 
[- - -] theory, [——] simulation. 

Zernike coefficients of an atmospheric wavefront can 

be considered as random Gaussian variables with zero 
mean and a certain variance [5]. Nevertheless a 

wavefront cannot be directly simulated by only 

generating these Zernike coefficients: Zernike 
polynomials are not statistically independent, there exists 

a non-zero covariance between some of the Zernike 

coefficients [1]. Noll derived an expression of this 
covariance [5] which, in the Fourier domain, is a Zernike 

matrix representation of the Kolmogorov phase 

spectrum. 
To obtain statistically independent random variables, 

one has to carry out the calculation in an orthonormal 

basis where vectors are completely decorrelated: we 

choose the basis formed by the Karhunen-Loève 

polynomials. Although they don’t have an analytical 

expression, they can be decomposed onto the Zernike 

basis like any wavefront which is simply done by 

diagonalization of the covariance matrix whose 

expression is given by Noll [5]. Coefficients can then be 

generated in this new basis by independent random 

drawings. Zernike coefficients are obtained by going 

back to the original basis, and thus respect the 

Kolmogorov model. 

The simulated turbulent phase can be written as a 

decomposition on the Zernike polynomials basis: 

ϕ(r) = ∑
=

J

j

ja
2

Zj(r), 

where the pupil dimension is implicitly normalized 

compared with its radius. In this decomposition the 
“piston” mode which corresponds to the mean phase, is 

excluded. The sum begins then from the order j = 2. In 

practice this sum is limited to a finite number J-1 of 

Zernike polynomials. In the rest of this paper, a 

parameter J = 135 was used. To respect the Shannon 

criteria, a pupil of 64 pixels diameter was used, enrolled 

in a square of side 64 pixels. 

Once the turbulent wavefront is computed, one has 

just to convolve it to the scene image to yield the related 

atmospheric perturbated image. 

 

A.3. Anisoplanatism or isoplanatism? 
 

A.3.1. What are anisoplanatism and isoplanatism? 
Atmospheric turbulence perturbations on optical beams 

vary according to these beams propagation direction. 

Consequently turbulence effects compensation methods 

(a posteriori restoration methods and adaptive optics 

methods) are limited to a reduced field angle named 

isoplanatic domain. This limitation is due to 

anisoplanatism, i.e. the perturbation depends on the 

position in the observed object field since the beams 

descended from different points in the field pass through 

different layers of the atmosphere [6] (Fig. 3). The two 

beams suffer from different perturbations: it is 

anisoplanatism. The hatched zone corresponds to the 
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atmosphere area where the two beams are degraded in 

the same way: it is the isoplanatic domain. It is very 
small compared to the total propagation path. 

 

 
 

Figure 3. Origin of atmospheric 
isoplanatism and anisoplanatism. 

 
A.3.2. Case of horizontal propagation. In the particular 

case of a horizontal propagation along a path of length L 

in a turbulent medium, the structure constant de  2

NC  is 

almost the same, and according to Fried we have [4]: 
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where r0 is the Fried parameter and θ0 is the maximal 

isoplanatic angle [in rd]. We can also consider that θ0 is 

the minimal angle from which we are in the case of 

anisoplanatism. So we have: 

r0 = 3.18 L θ0, 
with the scheme on Figure 4 [7]. 

 

Pixel resolution and isoplanatic angle: We are in the 

case of distant observation (i.e. the distance L between 

the scene and the acquisition system represents several 

kilometres, from 5 to 10 km according to the considered 

wavelength). For a camera of 1024 × 1024 pixels and a 

scene of 200 m × 200 m at a distance of 10 km, a pixel 

side represents about 20 cm of the real scene. 

Let us note α the pixel resolution. Numerically we 

obtain: α ≈ 20 µrd. With Fried formula [4] and the same 

values as in paragraph 1.3., we have: 

- in the visible domain: θ0 ≈ 0.51 µrd, 

- in the infrared domain: θ0 ≈ 4.02 µrd. 

In both cases the pixel resolution α is widely larger than 

the isoplanatic angle θ0: we are obviously in the case of 

anisoplanatism. 

 
Figure 4. Link between r0 and θθθθ0. 

 

A.4. Simulated images examples 
 

In this section short exposure degradation simulation 

results in both visible and infrared domains will be 

compared. Simulations have been carried out in total 

anisoplanatism and also in total isoplanatism. These two 

following original images have been used (Fig. 5): 

 

  
(A) (B) 

 

Figure 5. Original images in both the visible 
(A) and the infrared (B) domains (256 x 256 
pixels). 

 

A.4.1. Cameraman in total anisoplanatism. In the 

case of total anisoplanatism, each pixel is degraded by a 
different random wavefront. From a classical image in 

the visible domain, spatially and temporally decorrelated 

degradations have been simulated with different values 
for D/r0. 

On Figure 6, for a ratio D/r0 = 3 we can observe a 

very important degradation and the obtained image looks 

like an astronomic one when observing a star without 

adaptive optics or a posteriori restoration. For D/r0 = 1 

  Image plane 

Common 
area to the 
two beams 

Instrument 

Turbulent 
medium 

First far 
source 

Second 
far source 

L θ0 r0 3.18 θ0 

θ0 

Acquisition system 
coherence area 

Isoplanatism area 

L 

- 80 -- 80 -- 79 -            - 79 -            - 79 -0000000000- 79 -                               - 79 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                               - 80 -                                                              - 80 -                               - 80 -



we can observe a very granular aspect on the image 

while foreseeing details on the background. For a ratio 
D/r0 = 0.1 the granularity is much fainter and details are 

clearer. And for D/r0 = 0.01 the granularity disappeared 

and gave way to a slight blurring. 
 

 

Figure 6. Random degradations examples in 
total anisoplanatism with increasing 
perturbation intensity, in the visible domain. 

 
A.4.2. Cameraman in total isoplanatism. In the case of 

total isoplanatism, all pixels are degraded by the same 

random wavefront. From the same original image, for 

comparison, degradations in total isoplanatism have been 

simulated with different ratios D/r0. 

We can observe on Figure 7 that images contain a 

slight global shifting (for D/r0 = 3) and a blurring which 

becomes more important as the ratio D/r0 increases. 

 

A.4.3. Infrared images in total anisoplanatism. As in 

the visible domain, spatially and temporally decorrelated 
degradations due to atmospheric turbulence have been 

simulated on an original infrared image with different 

ratios D/r0. 
As in the visible case, we can observe (Fig. 8) a very 

strong degradation for D/r0 = 3. This infrared image has 

a dark and uniform background which permits us to 
observe the similarity between this image and an 

astronomical one. The bottom does not seem really 

degraded while the two men are particularly degraded. 
For D/r0 = 1 we can also observe a strong granularity and 

details seem to be more difficult to identify in the 

infrared domain than in the visible domain. For a ratio 
D/r0 = 0.1 there remains a slight granularity and details 

in the background appear. And for a ratio D/r0 = 0.01 the 

granular aspect disappeared and gave way to a slight 

blurring. 
 

  
D/r0 = 0.5 

 

D/r0 = 1 
 

 
D/r0 = 3 

 

Figure 7. Random degradations examples in 
total isoplanatism with increasing 
perturbation intensity, in the visible domain. 

 
 

  
D/r0 = 0.01 

 

D/r0 = 0.1 
 

  
D/r0 = 1 D/r0 = 3 

 

Figure 8. Random degradations examples in 
total anisoplanatism with increasing 
perturbation intensity, in the infrared domain. 

 

A.4.4. Conclusion. Due to the intrinsic definition of 

infrared images (less contrast and less details), there will 
be less degradation in the infrared domain. However we 

  
D/r0 = 0.01 

 

D/r0 = 0.1 
 

  
D/r0 = 1 D/r0 = 3 

- 81 -- 81 -- 80 -            - 80 -            - 80 -0000000000- 80 -                               - 80 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                               - 81 -                                                              - 81 -                               - 81 -



can observe the same kind of perturbation in the visible 

domain and on the observed objects in the infrared 
domain (especially a granular aspect for anisoplanatism). 

A possible amelioration of the algorithm could be for 

local isoplanatism (i.e. the case between total 
anisoplanatism and total isoplanatism) to replace the 

global shifting by a local one (real situation) which 

would create local deformations in different directions. 
This situation would better fit the case where the pixel 

resolution is close to the isoplanatic angle. 

 

A.5. Temporal evolution of atmospheric 

perturbation 
 

In this section we are interested in the simulation of 

temporal turbulence evolution. The exposure time is 

considered to be less than 5 ms to make short exposure 

images. It is chosen small enough to “freeze” the 

turbulence. To have a long exposure image, it is enough 

to take the average image of a temporally correlated 

short exposure images set. 

 

A.5.1. Temporal evolution of the random Zernike 

coefficients aj. With the same method as in [7], short 

exposure image sequences have been simulated taking 

into account temporal fluctuations of atmospheric 

turbulence. The principle is to filter a set of temporally 

independent random coefficients aj, and to obtain another 

set whose power spectral density obeys to the following 

equation [8]: 
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where ν is the temporal frequency, f = (fx, fy) is the spatial 

frequency, V is the wind speed oriented along the x axis, 

wj(ν) is the temporal power spectral density of coefficient 

aj at the order j, Wϕ  represents the phase spatial power 
spectrum, and for a Kolmogorov turbulence it is given 

by: 
3/113/5
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is the Fourier transform of the Zernike 

polynomial Zj and its modulus is [8]: 
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where Jl(x) is the Bessel function of the first kind at the 

order l. 
Here is an example of temporal simulation of 

atmospheric turbulence with the following 

characteristics: 

- acquisition frequency: f = 200 fps 

- exposure time: 5 ms 

- wind speed: V = 6 m/s (about 22 km/h) 

- propagation path length: L = 10 km 

- Fried parameter: r0 = 4 cm 

- pupil diameter: D = 12 cm 

- wavelength: λ = 550 nm. 

 

(A) 
 

 

(B) 

 
 

Figure 9. Samples of 500 temporally 
uncorrelated (A) and correlated (B) random 
Zernike coefficients related to polynomial Z4. 

 

On Figure 9 (A) the obtained signal looks like a white 

noise. Random Zernike coefficients aj have been 

generated independently each other by the method of N. 

Roddier [1], so they are completely temporally 

decorrelated. When looking at Figure 9 (B), a clear 

temporal correlation appears between the random 

coefficients aj. Their evolution is slower, then visually 

more representative of atmospheric turbulence. 

 

A.5.2. Simulation example.  

 

  
Frame 1 

 
Frame 2 

 

  
Frame 3 Average sequence 

image 
(PSNR = 20.8 dB) 

 

Figure 10. Extract of a 100 frames sequence 
in total anisoplanatism with a ratio D/r0 = 3, 
and the average image. 
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On Figure 10, even if each frame of the sequence 

seems much degraded we can see that the average image 
is clearly less perturbed. This is due to the fact that 

random coefficients follow a gaussian law in the 

Karhunen-Loève basis. Some of them are then cancelled 
during the averaging. Moreover the average image is a 

long exposure one: the perturbation does not look like 

granularity but rather like a strong blurring. Some details 
appear like the tower in the background. 
 

A.6. Conclusion on simulation 
 

In this first part single frames and then image 

sequences perturbated by atmospheric turbulence have 

been simulated. We are especially interested in the case 

of total anisoplanatism (cf. § A.3.2). That is why we only 

treat this case in the restoration part. 
 

B. Restoration 
 

B.1. Tested methods 
 

Four classical methods processing only single frames 

were tested on our images (the inverse filter, the Wiener 
filter, the Tikhonov regularization and the Laplacian 

regularization). The degradation was approximated by 

one point spread function. 
We also tested a recent method processing a whole 

image sequence: the “Windowed-Wiener” method [9]. 

Its principle is to detect a local space-varying point 
spread function (PSF) describing the atmospheric 

turbulence. The PSF is found by using a Wiener filter 

acting on windowed regions-of-interest of a reference 

image and each image frame of the sequence. The 

reference image is the average of the sequence and is 

updated after each deconvolution pass of the complete 

sequence. The process is repeated until the difference 

between the two last average images is minimized. 

 

B.2. Results in the visible domain 
 

The perturbated short exposure image we tried to 

restore with the four classical methods is shown on 

Figure 6 with D/r0 = 3. We also tried the “Windowed-
Wiener” method on the simulated sequence given in 

example in paragraph A.5.2. 

These results (Fig. 11) clearly show the inefficiency of 
the four classical methods to the case we are dealing 

with. The inverse filter is particularly unsuited due to its 

great sensibility to noise. The Tikhonov regularization 
gives the best PSNR for the classical methods but the 

edges are more visible with the Wiener filter in spite of a 

poorly restored background. 
In spite of the presence of a subsisting blurring, the 

result with the Windowed-Wiener method is visually 

much better than those obtained with classical methods, 

which is confirmed by a higher PSNR. The strength of 

this method results from the fact that the average image 
is used, giving a low frequency approximation of the true 

image. Secondly the local Wiener filter enables to better 

recover edges and details. For instance one can 
distinguish columns of the buildings in the background. 

 

  
Inverse filter 

(PSNR = 17.2 dB) 
 

Wiener filter 
(PSNR = 17.8 dB) 

 

  
Tikhonov 

regularization 
(PSNR = 18.7 dB) 

 

Laplacian 
regularization 

(PSNR = 18.6 dB) 
 

 
Windowed-Wiener method 

(PSNR = 21.6 dB) 
 

Figure 11. Some restoration results in the 
visible domain. 

 

B3. Results in the infrared domain 
 

We first tried the four classical methods on the image 

on Figure 8 with D/r0 = 3. Then in the same way as in 

the visible domain, an infrared sequence has been 

simulated in total anisoplanatism with the same ratio 

D/r0 = 3, and the Windowed-Wiener method was tested 

on this sequence. 

Results are shown in Figure 12. Once again the four 

classical methods are shown to be unsuited to our 
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images. However the Laplacian regularization gives the 

best PSNR. Globally the PSNR in the infrared case is 
higher than in the visible case. This is due to the fact that 

infrared images contain fewer details. The average image 

gives a better PSNR than the classical methods and the 
Windowed-Wiener method improves significantly the 

obtained result. 

 

  
Inverse filter 

(PSNR = 23.2 dB) 
 

Wiener filter 
(PSNR = 24.1 dB) 

 

  
Tikhonov 

regularization 
(PSNR = 24.7 dB) 

 

Laplacian 
regularization 

(PSNR = 24.9 dB) 
 

  
Average sequence 

image 
(PSNR = 26.3 dB) 

Windowed-Wiener 
method 

(PSNR = 27.7 dB) 
 

Figure 12. Some restoration results in the 
infrared domain. 

 

Conclusion 
 

This paper was dedicated to the simulation and the 

restoration of atmospheric perturbation in the case of 

horizontal ground observation at a large distance. First 

physical characteristics of atmospheric turbulence were 

talking about. Then the simulation algorithm was 

explained and adapted to both the anisoplanatic and 

isoplanatic cases. Simulations have been made with 

different ratios D/r0 at two wavelengths. Global remarks 
have been made for these two wavelengths, and 

differences have been noted for the infrared case where 

less degradation appears. Moreover image sequences 
have been simulated where we took into account the 

temporal evolution of the atmospheric turbulence. The 

method to obtain such a sequence was explained and an 
example was given. We noted that the simulation 

algorithm could be improved by introducing spatial 

correlation for the case of local isoplanatism. 
In the second part of this paper, different classical 

restoration methods have been tested on these image 

sets: the inverse filter, the Tikhonov regularization, the 

Laplacian regularization, and the Wiener filter. These 

four methods give naturally bad results. A more recent 

method called “Windowed-Wiener” has been tried too 

and is especially adapted to image sequences perturbated 

by atmospheric turbulence as shown by the obtained 

results. One could include in this algorithm a readjusting 

step for sequences with camera or scene motion, which 

would give a better reference image. 
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