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Abstract 

In the context of the semantic web; product 
knowledge is represented as product ontologies in 
it’s conceptual level. Product ontology construction, 
integration, and evolution greatly depend on the 
availability of well-defined semantics and powerful 
reasoning tools, as to facilitate machine 
understandability of web resources. In order to 
capture the semantic of a complicated product data 
model, the expressive language ALCNHR+K(D) is 
introduced not only can represent knowledge about 
concrete domain and constraints, but also, rule in 
some sense of a closed world semantic model 
hypothesis. This paper investigates an extension to 
description logic based knowledge reasoning, by 
means of decomposing and rewriting complicated 
hybrid concepts into partitions. We present an 
approach that automatically decomposes the whole 
knowledge base into a description logic compatible 
and constraints solver. Our argument is two-fold. 
First, complex description logics with powerful 
representation ability and second is how to reason 
with the combination of inferences from distributed 
heterogeneous reasoner. 

1. Introduction 

Description logics (DLs) [1] are a family of 

logical formalisms that originated in the field of 

artificial intelligence as a tool for the representation 

of conceptual knowledge. Since then, DLs have been 

successfully used in a wide range of application 

areas such as knowledge representation, reasoning 

pertaining to class based formalisms, (e.g conceptual 

database models and UML diagrams) and ontology 
engineering in the context of semantic web [2]. The 

basic syntactic entities of description logics are 

concepts which are constructed from concept names 

(unary predicates) and role names (binary relations). 

Furthermore, a set of axioms (also  called  Tbox)  are 

used for modeling the terminology of an application 

Knowledge  about  specific  individuals  and  their 
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interrelationships is modeled with a set of additional 

axioms (so-called ABox). Using different 

constructors defined with a uniform syntax and 

unambiguous semantics, complex concept definitions 

and axioms can be built from simple components. 

Therefore, DLs are particularly appealing both to 

represent ontological knowledge and to reason with 

it. Unfortunately, due to the inherent complexity with 

the product knowledge, the expressive power needed 

to model complex real-world product ontologies is 

quite high. Practical product ontology not only needs 
to represent abstract concept in the application, but 

also the concrete domain and constrains roles [3]. 

Even in some system, such as expert system, 

procedural rules also need to be considered. During 

the last few years, much research has been devoted 

to the development of more powerful representation 

system in DL family [4] [5] [6]. Despite the diversity 

of their representations, most of them are based on 

ALC [7] and its expressive successors SHIQ [8], 

extend the original tableau-based algorithm in 

different ways. It has been proved that by the 

reasoning extension of ALC with concrete domains 
is generally intractable. This problem can be 

moderated only if suitable restrictions are introduced 

by way of combining concept constructors [9]. 

Homogeneous reasoning systems (or systems with 

homogeneous inference algorithms) have 

encountered the difficulty of finding the right ‘trade-

off’ between expressiveness and computational 

complexity. To take advantage of the DLs popularity 

and flexibility in the context of semantic web we 

argue that; consistent DLs representation pattern is 

necessary. However, for reasoning ability, we need 
to decompose the product ontology into partitions, so 

that different reasoning paradigms can be jointly 

used. The benefits of such an approach in the context 

of ontology sharing through the articulation of 

ontology interdependencies are highlighted in [10]. 

The rest of this paper is organized as follows. 

Section 2 presents the overview of the expressive 

description logic, section 3 decomposes 

ALCNHR + K D ( )   knowledge base into partitions, 

Section 4 describes System architecture for product 

knowledge reasoning in detail. Section 5 expresses 

our conclusion and future work. 
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2. The expressive description logic 

In this section, we introduce the DLs language 

ALCNHR+(D)[11], which support practical modeling 

requirements and had been implemented in the 

RACER (Reasoner for ABoxes and Concept 

Expression Reasoner) system [12]. Based on 

ALCNHR+(D), we further extend it by epistemic 

operator to capture rule knowledge in product data. 

The following is it’s main syntax and semantics 

explanation: 

2.1. Syntax and semantics of ALCNHR
+
(D) 

We briefly introduce the syntax and semantics of 

the DLs language ALCNHR+(D). We assume five 

disjoint sets: a set of concept names c , a set of role 

names R , a set of feature names F , a set of 

individual names O  and a set of concrete objects 

OC . The mutually disjoint subsets P and T of 

R denote non-transitive and transitive roles, 

respectively (R P= ∪T ).   For presenting the 

syntax and semantics of the language 

( )  , a few definitions are required. ALCNHR + D 

Defination 1(Concrete Domain) a concrete 

D,domain D  is a pair (∆ ΦD) , where ∆D is a set 

called the domain and ΦD is a set of predicate 

names. The interpretation name function maps each 

predicate name PD  from ΦD  with arity n to a 
n

subset PI 
of ∆D . Concert objects from OC  are 

mapped to an element of ∆D . A concrete domain 

D is called admissible iff the set of predicate names 

ΦD is closed under negation and ΦD  contains a 

name TD for ∆D and the satisfiability problem 

1 

n1( nm 
n ... P x11,.... x1 1) Λ ΛP

m (xm1,... xmnm )  is decidable 

( m  is finite, P
i

ni ∈ ΦD , ni is the arity of P and xjk is 

a name for concrete object from ∆D ) . We assume 

that ⊥ D  is the negation of the predicate TD .Using 

the definitions from above, the syntax of concept 

terms in ALCNHR + (D) is defined as follows.  

Definition 2 (Concept Terms) Let C  be a set of 

concept names with is disjoint form R  and F . Any 

elements of C  is a concept term. If C and D  are 

concept terms, R ∈ R is an arbitrary role, S ∈S  is a 

,simple role, n m∈ � , n ≥ 1 and m ≥ 0 , P ∈ ΦD is a 

,predicate of the concrete domain, f f1,..., fk ∈ F  are 

features, then the following expressions are also 

concept terms: 

C D  (conjunction) ∩
C D  (disjunction) ∪

¬C  (negation)


∀R C   (concept value restriction)

.

.

∃R C   (concept exists restriction) 

∃≤mS (at most number restriction) 

∃≥nS (at least number restriction) 

∃f , f1,..., fk .P  (predicate exists restriction) 

f .∀ ⊥D  (no concrete domain filler restriction). 

Definition 3 (Terminological Axiom, TBox) If C 

and D  are concept terms, then C ⊆ D is a 

terminological axiom. A terminological axiom is also 

called generalized concept inclusion or GCI. A finite 

set of terminological axioms is called a terminology 

or TBox. 

The next definition gives a theoretical model 
semantics to the language introduced above. 

(Let D = ∆D , ΦD )  be a concrete domain. 

Definition 4 (Semantics) an interpretation 

ID = ( ,∆ ∆D , �
I )  consists of a set ∆ I  (the abstract I 

domain), a set ∆D  (the domain of the ‘concrete 

domain’ D ) and an interpretation function �I . The 

interpretation function �I maps each concept 

name C to a subset CI of ∆ I , each role name 

R from R to a subset RI of ∆ × ∆  I . Each I 

feature f from F  is mapped to a partial function f I 

afrom ∆ I to ∆D where f I ( )  = x  will be written 
I a xas ( ,  )  ∈ f . Each predicate name P from ΦD with 

narity n is mapped to a subset PI of ∆D . Let the 

symbols C , D  be concept expressions, R , S be role 

f1names, f , ,...  fn  be features and let P be a predicate 

name. Then, the interpretation function is extended 

to arbitrary concept and role terms as follows 

(||.||denotes the cardinality of a set): 

∩ I I I I I(C D) := C ∩ DI ,  (  C ∪ D) := C ∪ DI , (  ¬C) := ∆I \ CI 

I
( .  ,∃R C)

I 
:= {a ∈ ∆I | ∃b : (a  b  ) ∈ R , b ∈ CI 

} 

I 
. ,(∀R C)

I 
:= {a ∈ ∆  I | ∀b :  (  a  b  ) ∈ R , b ∈ CI 

} 

I 
,(∃≥nR) := {a ∈ ∆  I | || {b | (a  b  ) ∈ RI 

}|| ≥ n} 

I 
,(∃≤mR) := {a ∈ ∆  I | || {b | (a  b  ) ∈ RI 

}|| ≤ m} 

(∃f1,..., fn.P)I := {a ∈ ∆  | ∃x1,..., xn ∈ ∆  I D 

I I ,: ( a x  ) ∈ f1 ,..., ( a  xn ) ∈ fn , (x ,..., xn )∈ PI }1 , 1 

f ,∀ ⊥D )
Ι := {a ∈ ∆  | ¬∃x1 ∈ ∆ : (  a  x  1)∈ f I }( .  I D 

An interpretation ID is a model of a concept C  iff 

CID ≠ ∅  . An interpretation ID satisfies a 
I Iterminological axiom C ⊆ D iff C ⊂ D . ID is a 

model of a TBox iff it satisfies all terminological 

axioms C ⊆ D  in TBox. An interpretation ID is a 
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_ _ 

Imodel of an RBox iff RI ⊆ S  for all role inclusions 

R ⊆ S in R and, in addition, 
I +( )  ∈ R : R = (RI )∀transtive R 

Definition 5 (Assertional Axioms, ABox) Let 

O OO ∪ ON be a set of individual names (or 

individuals), where the set OO of “old” individuals is 

disjoint with the set ON  “new”individuals. Old 

individuals are those names that explicitly appear in 

an ABox given as input to an algorithm for solving 

an inference problem, (i.e. the initially mentioned 

individuals must not be in ON ). Elements of ON  will 

be generated internally. Furthermore, let OC be a set 

of names for concrete objects (OC ∩ = ∅  ) . If C is 

= 

O

∈a concept term, R R ¸ a role name, f ∈ F a 

,feature, a b  ∈OO ¸ are individual names and 

x x1, ,...  xn ∈OC , are names for concrete objects, then 

the following expressions are assertional axioms or 

ABox assertions: 

: ,a C  (concept assertion), (a b) : R (role assertion), 

( ,a x)  :  f (concrete domain feature assertion) and 

x1( ..  xn)  :  P (concrete domain predicate assertion). 

For example, part of the product model, illustrated in 

figure 1, can be represented as following: 

. .PC ⊆ ∀has _ part HD ∩ ∀  has _ part FD ∩ 

. .∀has _ part Mother _ board ∩∀  has _ part OS 

. .∩∃has _ part HD storag _ space , 

. . .has _ part OS storag _ space _ req more 

HD ⊆ ∀storage_space.integer 

OS ⊆ ∀storage_space_requirment.integer . 

2.2. Epistemic Operation K 

In a product knowledge system, such as computer 

aided process planning (CAPP), in addition to 

terminologies and world descriptions, guidelines are 

used to express knowledge, especial heuristic rules 

and default rules [13]. The simplest variant of such 

rules are expressions of the form C � D , 

where C , D  are concepts. The definition, “if an 

individual is proved to be an instance of C , then 

derive that it is also an instance of D ”. 

Operationally, a forward process can describe the 

semantics of a finite set of rules. Starting with an 

initial knowledge base K , a series of knowledge 

K (1) , K (2) 

K 

bases K (0) , ,………. is constructed, where 
(0) i + ( )i= K and K ( 1)  is obtained from K by adding a 

new assertion D( ) a whenever there exists a rule 
i i

C � D  such that K ( )
|= C a(  )  holds, but K ( ) does 

not contain D( ) a . These processes eventually halt if 

the initial knowledge base contains infinite rules. 

The difference between the rule C � D and the 

inclusion axiom C ⊆ D is that the rule is not 

equivalent to its contrapositive ¬D � ¬C . In 

addition, when applying rules one does not make a 

case analysis. For example, the inclusions C ⊆ D and 

C¬ ⊆ D  imply that every object belongs to D, 

whereas none of the rules C � D  and ¬C � D 

applies to an individual a  for which neither C a( ) 

nor ¬C a( ) can be proven. In order to capture the 

meaning of rules in a declarative way, we must 

augment description logics by an operator K [14], 

which does not refer to objects in the domain, but to 

what the knowledge base knows about the domain. 
Therefore, K  is an epistemic operator. 

To introduce the K-operator, we enrich both the 

syntax and the semantics of description logic 

languages. Originally, the K-operator has been 

defined for ALC [15]. First, we add one case to the 

syntax rule that allows us to construct epistemic 

,concepts: C D  → KC (epistemic concept). 

Intuitively, the concept KC denotes those objects for 

which the knowledge base knows that they are 

instances of C . Next, using K , we translate rules 

C � D  into inclusion axioms KC ⊆ D . 

For example, rules like this: “in a computer, if the 

motherboard type is B1, then the CPU is only limited 

to 386 types and the operation system is only limited 

to Linux can be represented as: 

. .K (∀has _ part B 1)  � ∀has _ part linux . And it 

can be translated into: 

. .K (∀has _ part B 1)  ⊆ ∀  has _ part linux . 

Intuitively, the K operator in front of the concept 

C has the effect that the axiom is only applicable to 

individuals that appear in the ABox and for which 

ABox and TBox imply that they are instances of C . 

Such a restricted applicability prevents the inclusion 
axiom from influencing satisfiability or subsumption 

relationships between concepts. In the sequel, we 

will define a formal semantics for the operator K that 

has exactly this effect. 

A rule knowledge base is a triple K = (T A  R  ) ,, , 

where T is a TBox, A  is an ABox, and R is a set of 
rules written as inclusion axioms of the form 

as KC ⊆ D . The procedural extension of such a 

( ,triple is the knowledge base K = T A  ) that is 

obtained from ( T A) by applying the trigger rules as , 

described above. We call the extended knowledge 

base ALCNHR+K(D) knowledge base, because it 

extended by the operator K . 

The semantics of epistemic inclusions will be 

defined only to individuals in the knowledge base 

that provably are instances of C , but not to arbitrary 

domain elements, which would be the case if we 

dropped K . The semantics will go beyond first-

order logic because we not only have to interpret 

concepts, roles and individuals, but also have to 

model the knowledge of a knowledge base. The fact 
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that a knowledge base has knowledge about the 

domain can be understood in such a way that it 

considers only a subset W of the set of all 

interpretations as possible states of the world. Those 

individuals that are interpreted as elements 

of C under all interpretations in W are then “known” 

to be in C . To make this formal, we modify the 

definition of ordinary (first-order) interpretations by 

assuming that: There is a fixed countable infinite set 

∆  that is the domain of every interpretation 

(Common Domain Assumption); There is a mapping 

from the individuals to the domain elements that 
fixes the way individuals are interpreted (Rigid Term 

Assumption). The Common Domain Assumption 

guarantees that all interpretations speak about the 

same domain. The Rigid Term Assumption allows us 

to identify each individual symbols with exactly one 

domain element. These assumptions do not 

essentially reduce the number of possible 

interpretations. As a consequence, properties like 

satisfiability and subsumption of concepts are the 

same independently of whether we define them with 

respect to arbitrary interpretations or those that 
satisfy the above assumptions. Now, we define an 

epistemic interpretation as a pair ( I W  ) , where I is, 

a first-order interpretation andW is a set of first-

order interpretations, all satisfying the above 

assumptions. Every epistemic interpretation gives 

rise to a unique mapping �I W, associating concepts 

and roles with subsets of ∆ and ∆ ×∆  , respectively. 

For ȉ, ⊥ for atomic concepts, negated atomic 

concepts, and for atomic roles, �I W, agrees with �I . 
For intersections, value restrictions, and existential 

quantifications, the definition is similar to the one 

of �I . 
,∩	 I W  I W  ∩ D

I W
(C D)

, = C 
, 

, I W  , 
. | ,(∀R C)

I W  = {a ∈ ∆  ∀  b.(  a  b  ) ∈ R 
, → b ∈C

I  W  
} 

∃ Τ  I W
R | , 

,
( .  )

, = {a ∈ ∆  ∃  b.(  a  b  ) ∈ R
I W  

} 

For other constructors, �I W, can be defined 

analogously.� It would also be possible to allow the 

operator K� to occur in front of roles and to define 

the semantics of role expressions of the form 

K..analogously. However, since epistemic roles are 

not needed to explain the semantics of rules, we 

restrict ourselves to epistemic concepts. 

( )   knowledge 3.	 Decompose ALCNHR +K D 

base into partitions 

After rules in product ontology are eliminated 
+through operator K , the ALCNHR K D ( )  knowledge 

base only includes concept definitions, which can be 

decomposed into three concepts: 

Atomic concepts, which define the ground, 

constructs for ontology modeling. Objects 

responding to atomic concepts in information system 

are directly implemented by basic data structure. 

This in term connects the data level and semantic 

level in the hierarchy of knowledge representation. 

For example, in figure 1, i.e. part of a computer 

configuration model, the concept “HD1” own an 
attribute “storage_space”, which is inherited form the 

further concept, whose value is an integer value. So 

“storage_space” is a concrete concept. 

Abstract concepts, which are defined through 

relationships/attributes declarations with hybrid 

concepts and other abstract concepts, such as “HD”. 

Hybrid concepts, which are defined through 

relationships/attributes declarations with atomic 

concepts and other abstract concepts or hybrid 

concepts, such as “HD1”. To avoid the undecidable 

inferential problems brought by concrete domain, 

hybrid concepts are decomposed into an abstract one, 
an image concrete concept which only contains the 

concrete concepts and their constrains projected from 

the source hybrid concept.The link relationship 

between image concrete concept and abstract 

concept is implied by the name of image concrete 
+ concept. So ALCNHR K D ( )  ) knowledge base 

denoted as ΠKB can be divided into partitions as ΠDL, 
i.e. a set of DL-oriented statements which do not 

exceed the expressive power of the selected DL-

based system, and ΠCS i.e. a set of non-DL 
statements which contains the concrete knowledge 

filtered out to from ΠDL. As a result, instead of 

reasoning with constrains directly, DL-based systems 
provide inferential services without being aware of 

the existence of constraint reasoning. All the 

information related to concrete domains is removed 

form concept definitions. Thus, only the proper DL-

based constructors, which are admitted by the 

selected DL-based inferential engines, are left 

Figure 1. Part of product knowledge model for PC 

For instance, let us suppose that the storage space 

of “HD1” type hard disk are to be required to be 

more than 4 GB, and the “MS 2000” need at least 2 

GB storage space. In order to decompose the hybrid 

concept, we have: 
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HD1 ⊆ Hard _ disk ∩ 
. 1∀storage _ space storage _ spaceHD 

MS_2000 ⊆ Operation_System 

∩storage_space_req.storage_space_reqoper_system 

In the above expression, the “storage space” 

restriction is replaced by an atomic concept 

“storage_space” which has the same name with the 

attribute name, but with a subscript which denote 

where the atomic concept comes from. Meanwhile, 

the restrictions on the hybrid concept is given as 

4 2storage _ spaceHD ≥ × 30 
1 

2 2storage_space_reqoper_system ≥ × 30

Now, by normalizing the knowledge base we 

split the concepts definitions and restriction into two 

parts. First, we replace all the hybrid concepts with 
the wrapper concepts, which are rewrite only by 

relationship or attribute with abstract concepts, and 

add new atomic concepts, such as 

“storage_apaceHD1” into the DL parts. Second, all 

the image concrete concepts acting as constraints 

variables are stored in the non-DL part together with 

their default domain, such as 

storage _ spaceHD1 storage_space_reqoper _ system 

type : integer ……… … type :integer 

domain : 4 	 ≥ × 230≥ × 230 domain : 2  

In default, domain field is the range allowed by 

data type. The above statements are translated into 

the underlying modeling languages of the 

cooperative inferential engines. Subsequently, 

translated statements are loaded into DL and CPL 

inferential engines. According to the results from 

both inferential engines, a reasoning coordinator 

creates hierarchical structures of hybrid concepts, 

which are introduced into DL definitions through the 
atomic axioms concepts. In our example, after 

loading the non DLs part into an external constraints 

solver, we obtain a new partial order: 

storage_space_reqoperation_system 

⊆ storage _ spaceHD1  Sending such information 

back to join the original DL part knowledge base, 

which can be used directly by DLs reasoner. We can 

conclude that, between satisfying other constraints, if 

a computer has a “HD1” type hard disk, operation 

system “linux” can be installed on it. 

4.	 System architecture for product 

knowledge  reasoning 

The STEP standard, ISO 10303, is the 

predominant international standard for the definition, 

management, and interchange of product data, being 

used in a wide variety of industries from aerospace, 

shipbuilding, oil and gas to power generation [16]. 

Central to the standard is the product data model, 

which are specified in EXPRESS (ISO 10303-11), a 

modeling language combing ideas from the entity-

attribute-relationship family of modeling languages 

with object modeling concepts [17]. To satisfy the 
large number of sophisticated and complex 

requirements put forwards by large-scale industry, 

the EXPRESS language has powerful expressing 

constructs to describe complicated product 

information, and had been used to build up a family 

of robust and time-tested standard application 

protocols. In term these have implemented in most 

Product data management (PDM) and Computer-

Aided-X (CAX) systems. PDM systems manages 

"data about data" or metadata and provides data 

management and integration at the image, drawing 

and document levels of coarse-grain data. CAX 
systems have provided engineering applications with 

high-performance solutions. In our former works 

[18] [19], we had proposed a translation mechanism, 

which rewrites the EXPRESS, based product 

knowledge base into DL based. So the system 

architecture for product data reasoning is composed 

of three modules, as shows in figure2. 

•	 The translator for EXPRESS schema to DLs; 

•	 Parser for  , which divides DLs with constraints 

and concrete domain to and  sub knowledge 

base. 

•	 Reasoning co-coordinator, which is the link 

between DLs reasoner and CS reasoner 

EXPRESS based Product 

Knowledge base 

Translator for EXPRESS 

schema to DLs 

CS reasoner DLs reasoner 

DLs based Product 

Knowledge base 

Parser for 

ALCNHR+K(D) 

DLs Part Non DLs Part (CS) 

Reasoning Co-ordintor 

User Interface for Product

Knowledge Reasoning


Figure1. Architecture for Product Knowledge 

Reasoning  

The combined reasoning process is as follows: 

1. Parse the input EXPRESS schema and translate it 

into the expressive DL language-

ALCNHR+K(D). 
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2.	 Parse the DL based product knowledge 

baseextract the concrete image concepts form 

hybrid concepts and decompose it into 

homogeneous parts: DL, non-DL (the concrete 

value and constraints). 

3.	 Check the consistency of constraints and 
propagate them in order to maintain a full path-

consistency by reducing the set of possible values 

associated with each constrained variable. 

4.	 Update DL-based representation with the quasi-

ordering between the atomic concepts which are 

the corresponding image concept for each 

variable. 

5.	 Update and classify the DL-based descriptions 

based on the new knowledge. 

5. Conclusions and Future work 

In previous sections we presented architecture for 

reasoning on product knowledge, which takes 

originally EXPRESS Schema as input. In order to 

capture the semantic of complicated product data 
+model, the expressive language ALCNHR K D ( ) ) is 

introduced. It not only can represent knowledge 

about concrete domain and constraints, but also can 

rule in some sense of closed world semantic model 

hypothesis. To avoid the undecidable inferential 

problems brought by the extension. A partition based 

reasoning approach is proposed. The usual reasoning 

problems, such as concept subsuming, can be 

resolved by the combined reasoning systems, which 

take the DL reason engine as the core part. Utilizing 

current Semantic Web technology, product 
knowledge can be embedded inside Web resources. 

One feature of this capability is the data sources, 

which are readily available for consumption by a 

wide variety of Semantic Web users. Our proposed 

product knowledge reasoning architecture can be 

used to Semantic Web based search engines and 

discovery services. For further work, we need to 

optimize the hybrid reasoning system to adapt the 

diverse application domain, which would gracefully 

support to automatically semantic web services 

composition and execution. 
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