
1
A Description Logic Based Approach For Product Knowledge Reasoning

1 1Nizamuddin Channa1,2, Shanping Li , Xiangjun Fu
1
College of Computer Science, Zhejiang University,Hangzhou, P.R. China 310027

2
Institute of Business Administration, University of Sindh,Jamshoro, Pakistan 71000

nchanna68@yahoo.com; shan@cs.zju.edu.cn; fuxiangjun@hotmail.com

Abstract

In the context of the semantic web; product
knowledge is represented as product ontologies in
it’s conceptual level. Product ontology construction,
integration, and evolution greatly depend on the
availability of well-defined semantics and powerful
reasoning tools, as to facilitate machine
understandability of web resources. In order to
capture the semantic of a complicated product data
model, the expressive language ALCNHR+K(D) is
introduced not only can represent knowledge about
concrete domain and constraints, but also, rule in
some sense of a closed world semantic model
hypothesis. This paper investigates an extension to
description logic based knowledge reasoning, by
means of decomposing and rewriting complicated
hybrid concepts into partitions. We present an
approach that automatically decomposes the whole
knowledge base into a description logic compatible
and constraints solver. Our argument is two-fold.
First, complex description logics with powerful
representation ability and second is how to reason
with the combination of inferences from distributed
heterogeneous reasoner.

1. Introduction

Description logics (DLs) [1] are a family of

logical formalisms that originated in the field of

artificial intelligence as a tool for the representation

of conceptual knowledge. Since then, DLs have been

successfully used in a wide range of application

areas such as knowledge representation, reasoning

pertaining to class based formalisms, (e.g conceptual

database models and UML diagrams) and ontology
engineering in the context of semantic web [2]. The

basic syntactic entities of description logics are

concepts which are constructed from concept names

(unary predicates) and role names (binary relations).

Furthermore, a set of axioms (also called Tbox) are

used for modeling the terminology of an application

Knowledge about specific individuals and their

The research, is funded by the Natural Science
Foundation of China (No. 60174053,No. 60473052).

interrelationships is modeled with a set of additional

axioms (so-called ABox). Using different

constructors defined with a uniform syntax and

unambiguous semantics, complex concept definitions

and axioms can be built from simple components.

Therefore, DLs are particularly appealing both to

represent ontological knowledge and to reason with

it. Unfortunately, due to the inherent complexity with

the product knowledge, the expressive power needed

to model complex real-world product ontologies is

quite high. Practical product ontology not only needs
to represent abstract concept in the application, but

also the concrete domain and constrains roles [3].

Even in some system, such as expert system,

procedural rules also need to be considered. During

the last few years, much research has been devoted

to the development of more powerful representation

system in DL family [4] [5] [6]. Despite the diversity

of their representations, most of them are based on

ALC [7] and its expressive successors SHIQ [8],

extend the original tableau-based algorithm in

different ways. It has been proved that by the

reasoning extension of ALC with concrete domains
is generally intractable. This problem can be

moderated only if suitable restrictions are introduced

by way of combining concept constructors [9].

Homogeneous reasoning systems (or systems with

homogeneous inference algorithms) have

encountered the difficulty of finding the right ‘trade-

off’ between expressiveness and computational

complexity. To take advantage of the DLs popularity

and flexibility in the context of semantic web we

argue that; consistent DLs representation pattern is

necessary. However, for reasoning ability, we need
to decompose the product ontology into partitions, so

that different reasoning paradigms can be jointly

used. The benefits of such an approach in the context

of ontology sharing through the articulation of

ontology interdependencies are highlighted in [10].

The rest of this paper is organized as follows.

Section 2 presents the overview of the expressive

description logic, section 3 decomposes

ALCNHR + K D () knowledge base into partitions,

Section 4 describes System architecture for product

knowledge reasoning in detail. Section 5 expresses

our conclusion and future work.

2-9525435-0 © IEEE SITIS 2005

1

 - 196 -

2. The expressive description logic

In this section, we introduce the DLs language

ALCNHR+(D)[11], which support practical modeling

requirements and had been implemented in the

RACER (Reasoner for ABoxes and Concept

Expression Reasoner) system [12]. Based on

ALCNHR+(D), we further extend it by epistemic

operator to capture rule knowledge in product data.

The following is it’s main syntax and semantics

explanation:

2.1. Syntax and semantics of ALCNHR
+
(D)

We briefly introduce the syntax and semantics of

the DLs language ALCNHR+(D). We assume five

disjoint sets: a set of concept names c , a set of role

names R , a set of feature names F , a set of

individual names O and a set of concrete objects

OC . The mutually disjoint subsets P and T of

R denote non-transitive and transitive roles,

respectively (R P= ∪T). For presenting the

syntax and semantics of the language

() , a few definitions are required. ALCNHR + D

Defination 1(Concrete Domain) a concrete

D,domain D is a pair (∆ ΦD) , where ∆D is a set

called the domain and ΦD is a set of predicate

names. The interpretation name function maps each

predicate name PD from ΦD with arity n to a
n

subset PI
of ∆D . Concert objects from OC are

mapped to an element of ∆D . A concrete domain

D is called admissible iff the set of predicate names

ΦD is closed under negation and ΦD contains a

name TD for ∆D and the satisfiability problem

1

n1(nm
n ... P x11,.... x1 1) Λ ΛP

m (xm1,... xmnm) is decidable

(m is finite, P
i

ni ∈ ΦD , ni is the arity of P and xjk is

a name for concrete object from ∆D) . We assume

that ⊥ D is the negation of the predicate TD .Using

the definitions from above, the syntax of concept

terms in ALCNHR + (D) is defined as follows.

Definition 2 (Concept Terms) Let C be a set of

concept names with is disjoint form R and F . Any

elements of C is a concept term. If C and D are

concept terms, R ∈ R is an arbitrary role, S ∈S is a

,simple role, n m∈ � , n ≥ 1 and m ≥ 0 , P ∈ ΦD is a

,predicate of the concrete domain, f f1,..., fk ∈ F are

features, then the following expressions are also

concept terms:

C D (conjunction) ∩
C D (disjunction) ∪

¬C (negation)

∀R C (concept value restriction)

.

.

∃R C (concept exists restriction)

∃≤mS (at most number restriction)

∃≥nS (at least number restriction)

∃f , f1,..., fk .P (predicate exists restriction)

f .∀ ⊥D (no concrete domain filler restriction).

Definition 3 (Terminological Axiom, TBox) If C

and D are concept terms, then C ⊆ D is a

terminological axiom. A terminological axiom is also

called generalized concept inclusion or GCI. A finite

set of terminological axioms is called a terminology

or TBox.

The next definition gives a theoretical model
semantics to the language introduced above.

(Let D = ∆D , ΦD) be a concrete domain.

Definition 4 (Semantics) an interpretation

ID = (,∆ ∆D , �
I) consists of a set ∆ I (the abstract I

domain), a set ∆D (the domain of the ‘concrete

domain’ D) and an interpretation function �I . The

interpretation function �I maps each concept

name C to a subset CI of ∆ I , each role name

R from R to a subset RI of ∆ × ∆ I . Each I

feature f from F is mapped to a partial function f I

afrom ∆ I to ∆D where f I () = x will be written
I a xas (,) ∈ f . Each predicate name P from ΦD with

narity n is mapped to a subset PI of ∆D . Let the

symbols C , D be concept expressions, R , S be role

f1names, f , ,... fn be features and let P be a predicate

name. Then, the interpretation function is extended

to arbitrary concept and role terms as follows

(||.||denotes the cardinality of a set):

∩ I I I I I(C D) := C ∩ DI , (C ∪ D) := C ∪ DI , (¬C) := ∆I \ CI

I
(. ,∃R C)

I
:= {a ∈ ∆I | ∃b : (a b) ∈ R , b ∈ CI

}

I
. ,(∀R C)

I
:= {a ∈ ∆ I | ∀b : (a b) ∈ R , b ∈ CI

}

I
,(∃≥nR) := {a ∈ ∆ I | || {b | (a b) ∈ RI

}|| ≥ n}

I
,(∃≤mR) := {a ∈ ∆ I | || {b | (a b) ∈ RI

}|| ≤ m}

(∃f1,..., fn.P)I := {a ∈ ∆ | ∃x1,..., xn ∈ ∆ I D

I I ,: (a x) ∈ f1 ,..., (a xn) ∈ fn , (x ,..., xn)∈ PI }1 , 1

f ,∀ ⊥D)
Ι := {a ∈ ∆ | ¬∃x1 ∈ ∆ : (a x 1)∈ f I }(. I D

An interpretation ID is a model of a concept C iff

CID ≠ ∅ . An interpretation ID satisfies a
I Iterminological axiom C ⊆ D iff C ⊂ D . ID is a

model of a TBox iff it satisfies all terminological

axioms C ⊆ D in TBox. An interpretation ID is a

 - 197 -

_ _

Imodel of an RBox iff RI ⊆ S for all role inclusions

R ⊆ S in R and, in addition,
I +() ∈ R : R = (RI)∀transtive R

Definition 5 (Assertional Axioms, ABox) Let

O OO ∪ ON be a set of individual names (or

individuals), where the set OO of “old” individuals is

disjoint with the set ON “new”individuals. Old

individuals are those names that explicitly appear in

an ABox given as input to an algorithm for solving

an inference problem, (i.e. the initially mentioned

individuals must not be in ON). Elements of ON will

be generated internally. Furthermore, let OC be a set

of names for concrete objects (OC ∩ = ∅) . If C is

=

O

∈a concept term, R R ¸ a role name, f ∈ F a

,feature, a b ∈OO ¸ are individual names and

x x1, ,... xn ∈OC , are names for concrete objects, then

the following expressions are assertional axioms or

ABox assertions:

: ,a C (concept assertion), (a b) : R (role assertion),

(,a x) : f (concrete domain feature assertion) and

x1(.. xn) : P (concrete domain predicate assertion).

For example, part of the product model, illustrated in

figure 1, can be represented as following:

. .PC ⊆ ∀has _ part HD ∩ ∀ has _ part FD ∩

. .∀has _ part Mother _ board ∩∀ has _ part OS

. .∩∃has _ part HD storag _ space ,

. . .has _ part OS storag _ space _ req more

HD ⊆ ∀storage_space.integer

OS ⊆ ∀storage_space_requirment.integer .

2.2. Epistemic Operation K

In a product knowledge system, such as computer

aided process planning (CAPP), in addition to

terminologies and world descriptions, guidelines are

used to express knowledge, especial heuristic rules

and default rules [13]. The simplest variant of such

rules are expressions of the form C � D ,

where C , D are concepts. The definition, “if an

individual is proved to be an instance of C , then

derive that it is also an instance of D ”.

Operationally, a forward process can describe the

semantics of a finite set of rules. Starting with an

initial knowledge base K , a series of knowledge

K (1) , K (2)

K

bases K (0) , ,………. is constructed, where
(0) i + ()i= K and K (1) is obtained from K by adding a

new assertion D() a whenever there exists a rule
i i

C � D such that K ()
|= C a() holds, but K () does

not contain D() a . These processes eventually halt if

the initial knowledge base contains infinite rules.

The difference between the rule C � D and the

inclusion axiom C ⊆ D is that the rule is not

equivalent to its contrapositive ¬D � ¬C . In

addition, when applying rules one does not make a

case analysis. For example, the inclusions C ⊆ D and

C¬ ⊆ D imply that every object belongs to D,

whereas none of the rules C � D and ¬C � D

applies to an individual a for which neither C a()

nor ¬C a() can be proven. In order to capture the

meaning of rules in a declarative way, we must

augment description logics by an operator K [14],

which does not refer to objects in the domain, but to

what the knowledge base knows about the domain.
Therefore, K is an epistemic operator.

To introduce the K-operator, we enrich both the

syntax and the semantics of description logic

languages. Originally, the K-operator has been

defined for ALC [15]. First, we add one case to the

syntax rule that allows us to construct epistemic

,concepts: C D → KC (epistemic concept).

Intuitively, the concept KC denotes those objects for

which the knowledge base knows that they are

instances of C . Next, using K , we translate rules

C � D into inclusion axioms KC ⊆ D .

For example, rules like this: “in a computer, if the

motherboard type is B1, then the CPU is only limited

to 386 types and the operation system is only limited

to Linux can be represented as:

. .K (∀has _ part B 1) � ∀has _ part linux . And it

can be translated into:

. .K (∀has _ part B 1) ⊆ ∀ has _ part linux .

Intuitively, the K operator in front of the concept

C has the effect that the axiom is only applicable to

individuals that appear in the ABox and for which

ABox and TBox imply that they are instances of C .

Such a restricted applicability prevents the inclusion
axiom from influencing satisfiability or subsumption

relationships between concepts. In the sequel, we

will define a formal semantics for the operator K that

has exactly this effect.

A rule knowledge base is a triple K = (T A R) ,, ,

where T is a TBox, A is an ABox, and R is a set of
rules written as inclusion axioms of the form

as KC ⊆ D . The procedural extension of such a

(,triple is the knowledge base K = T A) that is

obtained from (T A) by applying the trigger rules as ,

described above. We call the extended knowledge

base ALCNHR+K(D) knowledge base, because it

extended by the operator K .

The semantics of epistemic inclusions will be

defined only to individuals in the knowledge base

that provably are instances of C , but not to arbitrary

domain elements, which would be the case if we

dropped K . The semantics will go beyond first-

order logic because we not only have to interpret

concepts, roles and individuals, but also have to

model the knowledge of a knowledge base. The fact

 - 198 -

that a knowledge base has knowledge about the

domain can be understood in such a way that it

considers only a subset W of the set of all

interpretations as possible states of the world. Those

individuals that are interpreted as elements

of C under all interpretations in W are then “known”

to be in C . To make this formal, we modify the

definition of ordinary (first-order) interpretations by

assuming that: There is a fixed countable infinite set

∆ that is the domain of every interpretation

(Common Domain Assumption); There is a mapping

from the individuals to the domain elements that
fixes the way individuals are interpreted (Rigid Term

Assumption). The Common Domain Assumption

guarantees that all interpretations speak about the

same domain. The Rigid Term Assumption allows us

to identify each individual symbols with exactly one

domain element. These assumptions do not

essentially reduce the number of possible

interpretations. As a consequence, properties like

satisfiability and subsumption of concepts are the

same independently of whether we define them with

respect to arbitrary interpretations or those that
satisfy the above assumptions. Now, we define an

epistemic interpretation as a pair (I W) , where I is,

a first-order interpretation andW is a set of first-

order interpretations, all satisfying the above

assumptions. Every epistemic interpretation gives

rise to a unique mapping �I W, associating concepts

and roles with subsets of ∆ and ∆ ×∆ , respectively.

For ȉ, ⊥ for atomic concepts, negated atomic

concepts, and for atomic roles, �I W, agrees with �I .
For intersections, value restrictions, and existential

quantifications, the definition is similar to the one

of �I .
,∩	 I W I W ∩ D

I W
(C D)

, = C
,

, I W ,
. | ,(∀R C)

I W = {a ∈ ∆ ∀ b.(a b) ∈ R
, → b ∈C

I W
}

∃ Τ I W
R | ,

,
(.)

, = {a ∈ ∆ ∃ b.(a b) ∈ R
I W

}

For other constructors, �I W, can be defined

analogously.� It would also be possible to allow the

operator K� to occur in front of roles and to define

the semantics of role expressions of the form

K..analogously. However, since epistemic roles are

not needed to explain the semantics of rules, we

restrict ourselves to epistemic concepts.

() knowledge 3.	 Decompose ALCNHR +K D

base into partitions

After rules in product ontology are eliminated
+through operator K , the ALCNHR K D () knowledge

base only includes concept definitions, which can be

decomposed into three concepts:

Atomic concepts, which define the ground,

constructs for ontology modeling. Objects

responding to atomic concepts in information system

are directly implemented by basic data structure.

This in term connects the data level and semantic

level in the hierarchy of knowledge representation.

For example, in figure 1, i.e. part of a computer

configuration model, the concept “HD1” own an
attribute “storage_space”, which is inherited form the

further concept, whose value is an integer value. So

“storage_space” is a concrete concept.

Abstract concepts, which are defined through

relationships/attributes declarations with hybrid

concepts and other abstract concepts, such as “HD”.

Hybrid concepts, which are defined through

relationships/attributes declarations with atomic

concepts and other abstract concepts or hybrid

concepts, such as “HD1”. To avoid the undecidable

inferential problems brought by concrete domain,

hybrid concepts are decomposed into an abstract one,
an image concrete concept which only contains the

concrete concepts and their constrains projected from

the source hybrid concept.The link relationship

between image concrete concept and abstract

concept is implied by the name of image concrete
+ concept. So ALCNHR K D ()) knowledge base

denoted as ΠKB can be divided into partitions as ΠDL,
i.e. a set of DL-oriented statements which do not

exceed the expressive power of the selected DL-

based system, and ΠCS i.e. a set of non-DL
statements which contains the concrete knowledge

filtered out to from ΠDL. As a result, instead of

reasoning with constrains directly, DL-based systems
provide inferential services without being aware of

the existence of constraint reasoning. All the

information related to concrete domains is removed

form concept definitions. Thus, only the proper DL-

based constructors, which are admitted by the

selected DL-based inferential engines, are left

Figure 1. Part of product knowledge model for PC

For instance, let us suppose that the storage space

of “HD1” type hard disk are to be required to be

more than 4 GB, and the “MS 2000” need at least 2

GB storage space. In order to decompose the hybrid

concept, we have:

 - 199 -

HD1 ⊆ Hard _ disk ∩
. 1∀storage _ space storage _ spaceHD

MS_2000 ⊆ Operation_System

∩storage_space_req.storage_space_reqoper_system

In the above expression, the “storage space”

restriction is replaced by an atomic concept

“storage_space” which has the same name with the

attribute name, but with a subscript which denote

where the atomic concept comes from. Meanwhile,

the restrictions on the hybrid concept is given as

4 2storage _ spaceHD ≥ × 30
1

2 2storage_space_reqoper_system ≥ × 30

Now, by normalizing the knowledge base we

split the concepts definitions and restriction into two

parts. First, we replace all the hybrid concepts with
the wrapper concepts, which are rewrite only by

relationship or attribute with abstract concepts, and

add new atomic concepts, such as

“storage_apaceHD1” into the DL parts. Second, all

the image concrete concepts acting as constraints

variables are stored in the non-DL part together with

their default domain, such as

storage _ spaceHD1 storage_space_reqoper _ system

type : integer ……… … type :integer

domain : 4 	 ≥ × 230≥ × 230 domain : 2

In default, domain field is the range allowed by

data type. The above statements are translated into

the underlying modeling languages of the

cooperative inferential engines. Subsequently,

translated statements are loaded into DL and CPL

inferential engines. According to the results from

both inferential engines, a reasoning coordinator

creates hierarchical structures of hybrid concepts,

which are introduced into DL definitions through the
atomic axioms concepts. In our example, after

loading the non DLs part into an external constraints

solver, we obtain a new partial order:

storage_space_reqoperation_system

⊆ storage _ spaceHD1 Sending such information

back to join the original DL part knowledge base,

which can be used directly by DLs reasoner. We can

conclude that, between satisfying other constraints, if

a computer has a “HD1” type hard disk, operation

system “linux” can be installed on it.

4.	 System architecture for product

knowledge reasoning

The STEP standard, ISO 10303, is the

predominant international standard for the definition,

management, and interchange of product data, being

used in a wide variety of industries from aerospace,

shipbuilding, oil and gas to power generation [16].

Central to the standard is the product data model,

which are specified in EXPRESS (ISO 10303-11), a

modeling language combing ideas from the entity-

attribute-relationship family of modeling languages

with object modeling concepts [17]. To satisfy the
large number of sophisticated and complex

requirements put forwards by large-scale industry,

the EXPRESS language has powerful expressing

constructs to describe complicated product

information, and had been used to build up a family

of robust and time-tested standard application

protocols. In term these have implemented in most

Product data management (PDM) and Computer-

Aided-X (CAX) systems. PDM systems manages

"data about data" or metadata and provides data

management and integration at the image, drawing

and document levels of coarse-grain data. CAX
systems have provided engineering applications with

high-performance solutions. In our former works

[18] [19], we had proposed a translation mechanism,

which rewrites the EXPRESS, based product

knowledge base into DL based. So the system

architecture for product data reasoning is composed

of three modules, as shows in figure2.

•	 The translator for EXPRESS schema to DLs;

•	 Parser for , which divides DLs with constraints

and concrete domain to and sub knowledge

base.

•	 Reasoning co-coordinator, which is the link

between DLs reasoner and CS reasoner

EXPRESS based Product

Knowledge base

Translator for EXPRESS

schema to DLs

CS reasoner DLs reasoner

DLs based Product

Knowledge base

Parser for

ALCNHR+K(D)

DLs Part Non DLs Part (CS)

Reasoning Co-ordintor

User Interface for Product

Knowledge Reasoning

Figure1. Architecture for Product Knowledge

Reasoning

The combined reasoning process is as follows:

1. Parse the input EXPRESS schema and translate it

into the expressive DL language-

ALCNHR+K(D).

 - 200 -

2.	 Parse the DL based product knowledge

baseextract the concrete image concepts form

hybrid concepts and decompose it into

homogeneous parts: DL, non-DL (the concrete

value and constraints).

3.	 Check the consistency of constraints and
propagate them in order to maintain a full path-

consistency by reducing the set of possible values

associated with each constrained variable.

4.	 Update DL-based representation with the quasi-

ordering between the atomic concepts which are

the corresponding image concept for each

variable.

5.	 Update and classify the DL-based descriptions

based on the new knowledge.

5. Conclusions and Future work

In previous sections we presented architecture for

reasoning on product knowledge, which takes

originally EXPRESS Schema as input. In order to

capture the semantic of complicated product data
+model, the expressive language ALCNHR K D ()) is

introduced. It not only can represent knowledge

about concrete domain and constraints, but also can

rule in some sense of closed world semantic model

hypothesis. To avoid the undecidable inferential

problems brought by the extension. A partition based

reasoning approach is proposed. The usual reasoning

problems, such as concept subsuming, can be

resolved by the combined reasoning systems, which

take the DL reason engine as the core part. Utilizing

current Semantic Web technology, product
knowledge can be embedded inside Web resources.

One feature of this capability is the data sources,

which are readily available for consumption by a

wide variety of Semantic Web users. Our proposed

product knowledge reasoning architecture can be

used to Semantic Web based search engines and

discovery services. For further work, we need to

optimize the hybrid reasoning system to adapt the

diverse application domain, which would gracefully

support to automatically semantic web services

composition and execution.

6. References

[1] Calvanese, D., De Giacomo, G., Lenzerini, M., Nardi,
D., and Rosati, R. 1998. Description logic framework for
information integration. In Proceedings of the 6th
International Conference on Principles of Knowledge
Representation and Reasoning (KR’98). 2–13.
[2] The Semantic Web lifts off 'by Tim Berners-Lee and

Eric Miller, W3C. ERCIM News No. 51, October 2002
[3] Felix Metzger, “The challenge of capturing the
semantics of STEP data models precisely”, Workshop on
Product Knowledge Sharing for Integrated Enterprises
(ProKSI'96), 1996.

[4] F. Baader and U. Sattler, “Description Logics with
Concrete Domains and Aggregation”, In H. Prade, editor,
Proceedings of the 13th European Conference on Artificial
Intelligence (ECAI-98), pages 336-340. John Wiley &
Sons Ltd, 1998.

[5] F. Baader and R. Küsters, “Unification in a Description
Logic with Transitive Closure of Roles”. In R.
Nieuwenhuis and A. Voronkov, editors, Proceedings of the
8th International Conference on Logic for Programming,
Artificial Intelligence, and Reasoning (LPAR 2001),
volume 2250 of Lecture Notes in Computer Science, pages
217–232, Havana, Cuba, 2001. Springer-Verlag.
[6] V. Haarslev, C. Lutz, and R. Möller, “A Description

Logic with Concrete Domains and Role-forming
Predicates”. Journal of Logic and Computation, 9(3):351–
384, 1999.
[7] The Description Logic Handbook, edited by F. Baader,
D. Calvanese, DL McGuinness, D. Nardi, PF Patel-
Schneider, Cambridge University Press, 2002.
[8] Ian Horrocks, Ulrike Sattler, “Optimised Reasoning for
SHIQ”, ECAI 2002: 277-281.

[9] I. Horrocks, U. Sattler, and S. Tobies, “Practical
Reasoning for Very Expressive Description Logics”. Logic
Journal of the IGPL, 8(3):239–264, May 2000.
[10] E. Compatangelo, H. Meisel, “K-Share: an
architecture for sharing heterogeneous conceptualizations”.
In Intl. Workshop on Intelligent Knowledge Management
Techniques (I-KOMAT'2002) - Proc. of the 6th Intl. Conf.
on Knowledge-Based Intelligent Information &

Engineering Systems (KES’2002), pages 1439–1443.
[11] Volker Haarslev, Ralf Möller, Michael Wessel, “The
Description Logic ALCNHR+ Extended with Concrete
Domains: A Practically Motivated Approach”. IJCAR
2001: 29-44.
[12] Domazet D., “The automatic tool selection with the
production rules matrix method”. Annals of the CIRP,
1990, 39(1): 497�500.
[13] Volker Haarselev and Ralf Moller. RACER system

Description. In proceedings of the International Joint
Conference on Automated Reasoning(IJCAR 2001),
Volume 2083, 2001.
[14] Dretske, Fred, “Epistemic Operators, The Journal of
Philosophy”, Vol. LXVII, No.24, Dec. 24, pp.1007-1023.
[15] Donini, F. M., Lenzerini, M., Nardi, D., Nutt, W., and
Schaerf, A., “Adding epistemic operators to concept
languages”. In Proceedings of the 3rd International

Conference on the Principles of Knowledge Representation
and Reasoning (KR’92). Morgan Kaufmann, Los Altos,
342–353.
[16] Mike Pratt, “Introduction to ISO 10303 - The STEP
Standard for Product Data Exchange”, ASME Journal of
Computing and Information Science in Engineering,
November, 2000
[17] Schenk, D.A., and Wilson, P.R., “Information

Modeling: The EXPRESS Way”, Oxford University Press,
New York, NY, 1994 (ISBN 0-19-508714-3).
[18] Xiangjun Fu, Shanping Li, “Ontology Knowledge
Representation for Product Data Model”, Journal of
Computer-Aided Design & Computer Graphics, to appear
(in Chinese).
[19] Xiangjun Fu, Shanping Li, Ming Guo, Nizamuddin
Channa “Methodology for Semantic Representing of

Product Data in XML”, In Proceedings of Advance
Workshop on Content Computing, LNCS, 2004

 - 201 -

