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Abstract

In this paper, we compare different approaches of blind
identification of nonminimum phase systems. These ap-
proaches are both based on third and fourth-order cumu-
lants. Two nonlinear optimization algorithms, namely the
Gradient Descent and the Gauss-Newton algorithms are ex-
posed. An algorithm based on the joint-diagonalization of
the fourth-order cumulants matrices (FOSI) is also conside-
red, as well as an improved version of the classical C(q, k)

algorithm based on the choice of the Best 1-D Slice of
fourth-order cumulants. Simulation results are shown to
illustrate and compare the considered algorithms.

Keywords : Blind identification, Higher-Order Statis-
tics, Gradient descent algorithm, Gauss-Newton algorithm,
Joint-diagonalization.

1. Introduction

Blind identification of linear systems using Higher-Order
Statistics (third and fourth-order cumulants) has a wide ap-
plicability in many fields ; e.g., sonar, radar, seismic data
processing, adaptive filtering, blind equalization, array pro-
cessing, data communication, time daily estimation, image
and speech processing [9]. These statistics are very use-
ful in problems where either non-Gaussianity, nonminimum
phase assumptions, and additive Gaussian noise are present
[7].

Signal processing techniques using Higher-Order Sta-
tistics (HOS) or cumulants have attracted considerable at-
tention in the literature ([3], [8], [11]). There are several
motivations behind this interest [2]. First, higher-order cu-
mulants are blind to all kinds of Gaussian noise ; that is,

HOS for a Gaussian process are identically zero. Hence,
when the processed signal is non-Gaussian and the additive
noise is Gaussian, the noise will vanish in the cumulants do-
main. Thus, a greater degree of noise immunity is possible.
Second, cumulants are useful in identifying non-minimum
phase systems and in reconstructing non-minimum phase
signals when the signals are non-Gaussian. That is because
cumulants preserve the phase information of the signal.
Third, cumulants are useful in detecting and characterizing
the properties of nonlinear systems.

In this paper, we compare blind identification methods
using the nonlinear optimization algorithms proposed in
[5], with the well known Fourth-Order System Identifica-
tion algorithm proposed in [4]. The first approach has the
advantage of estimating a non redundant parameters vector,
while the second one exploits all the fourth-order cumulants
through a joint-diagonalization procedure. A third approach
consists in selecting the best 1-D slice of fourth-order cumu-
lants in order to improve estimation quality using the clas-
sical C(q, k) algorithm [10]. These algorithms are used to
identify some communication channels and also solar pro-
cesses.

This paper is organized as follows : The problem sta-
tement is given in Section 2. In Section 3, we expose the
solutions using Gradient Descent and Gauss-Newton algo-
rithms. FOSI and modified C(q, k) algorithms are briefly
introduced in Sections 4 and 5, respectively. In Section 6,
simulation results are discussed. Finally, conclusions are
drawn in Section 7.

2. Problem Statement

We consider a discrete time, causal, nonminimum phase
linear time-invariant process represented on figure 1 and
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described by equations (1) and (2),

w(k)
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FIG. 1. Single channel system

x(k) =

q∑
i=0

h(i)w(k − i); {h(0) = 1} (1)

y(k) = x(k) + v(k) (2)

with the following assumptions :
H.1. The input signal w(k) is a real non measurable

sequence, driven from a zero-mean, independent and
identically distributed (i.i.d), stationary non-Gaussian
process, with unknown distribution, and :

Cm,w(τ1, τ2, . . . , τm−1) = γm,w δ(τ1, τ2, . . . , τm−1)

where :

� Cm,w(τ1, τ2, . . . , τm−1) is the mth-order cumu-
lant of the input signal.

� γm,w = Cm,w( 0, 0, . . . , 0︸ ︷︷ ︸
m−1

) �= 0, ∀ m ≥ 2

� γ2,w = σ2
w = E

{
w(k)

2
}

� γ3,w = E
{
w(k)

3
}

is the skewness of w(k).

� γ4,w = E
{
w(k)

4
}−3

[
E

{
w(k)

2
}]2 is the kur-

tosis of w(k).

H.2. The additive noise v(k) is assumed to be an
i.i.d Gaussian zero-mean sequence with unknown va-
riance, and independent of w(k).

H.3. The order q of the model is assumed to be known.

The objective is to estimate the coefficients
{h(i)}i=1,...,q (1) from the cumulants of the observa-
tions {y(k), 1 ≤ k ≤ N} (2).

3. Methods based on nonlinear optimization al-
gorithms

For the nonminimum phase system described by equa-
tion (1) with the assumptions H.1, H.2, and H.3, the mth
and nth-order cumulants of the system output (2) are linked

by the following relation [1] :

imax∑
i=imin

h(i)

[
m−s−1∏

k=1

h(i + τk)

]
×

Cn,y(β1, β2, . . . , βn−s−1, i + α1, i + α2, . . . , i + αs) =

γn,w

γm,w

jmax∑
j=jmin

h(j)

[
n−s−1∏

k=1

h(j + βk)

]
×

Cm,y(τ1, τ2, . . . , τm−s−1, j + α1, j + α2, . . . , j + αs)

(3)

where m > 2, n > 2 and s is an arbitrary integer satisfying :
1 ≤ s ≤ min(m, n) − 2,

and

⎧⎪⎪⎨
⎪⎪⎩

imin = max(0,−τ1, · · · ,−τm−s−1)

imax = min(q, q − τ1, · · · , q − τm−s−1)

jmin = max(0,−β1, · · · ,−βn−s−1)

jmax = min(q, q − β1, · · · , q − βn−s−1)

Setting n = 3, m = 4, and s = 1 in equation (3), yields

imax∑
i=imin

h(i)h(i + τ1)h(i + τ2)C3,y(β1, i + α1) =

γ3,w

γ4,w

jmax∑
j=jmin

h(j)h(j + β1)C4,y(τ1, τ2, j + α1) (4)

where

⎧⎪⎪⎨
⎪⎪⎩

imin = max(0,−τ1,−τ2)

imax = min(q, q − τ1, q − τ2)

jmin = max(0,−β1)

jmax = min(q, q − β1)

By setting τ1 = τ2 = 0 in (4), we get the relation used
in this paper for estimating the parameters {h(i)} i=1,2,...,q

of the model.

q∑
i=0

h3
(i)C3,y(β1, i + α1) =

γ3,w

γ4,w

jmax∑
j=jmin

h(j)h(j + β1)C4,y(0, 0, j + α1) (5)

It is important to determine the range of values of α1

and β1 so that the cumulants {C3,y(β1, i + α1)}i=0,··· ,q ,
{C4,y(0, 0, j + α1)}j=jmin,··· ,jmax , and the coefficients
{h(j + β1)} are not all zero for each equation.

By taking into account the property of causality of the
model and the domain in which third and fourth-order cu-
mulants of a nonminimum phase (q) process are non-zero
[7], we obtain :⎧⎪⎪⎨

⎪⎪⎩

−q ≤ β1 ≤ q

−2q ≤ α1 ≤ q

−2q + β1 ≤ α1 ≤ q + β1

(6)
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Using the symmetry properties of cumulants [9], the set
of values for α1 and β1 is defined by :

{ −q ≤ β1 ≤ 0

−2q ≤ α1 ≤ q + β1

(7)

Concatenating (5) for all the values of α1 and β1 defined
by (7), we obtain the following system of equations :

Mθ = r (8)

where :

θ = [h(1) · · · h(q) h2
(1) h(1)h(2)

· · · h(1)h(q) h2
(2) · · · h(2)h(q) h2

(3)

· · · h2
(q) ε4,3 ε4,3h

3
(1) · · · ε4,3h

3
(q)]T (9)

� ε4,3 = γ4,w/γ3,w.

� M is a matrix of dimension
[

5q2+7q+2
2 , q2+5q+2

2

]
.

� θ is a vector of dimension
[

q2+5q+2
2 , 1

]
.

� r is a vector of dimension
[

5q2+7q+2
2 , 1

]
.

3.1. Gradient Descent Algorithm (GDA)

The idea of this algorithm is to reduce the dimension
of the estimated parameter vector θ which has

(
q2+5q+2

2

)
components, as seen in (9). The new parameters vector θNL

is a (q + 1) length vector :

θNL = [h(1), · · · , h(q), ε4,3]
T (10)

The criterion to be minimized is :

JLS = ‖r − φ(θNL)‖2

The GDA solution has the following form :

θ̂i+1
NLgr

= θ̂i
NLgr

+ λJT
(r − φ(θ̂i

NLgr
)) (11)

where :
� φ is the system of equations obtained by concatenating

(5) for all the values of α1 and β1 defined by (7) :

φ(θNL) = Mθ

� J is the Jacobian matrix of φ,

J =

[
∂φk

∂θNLl

]
(k,l)

where k = 1, · · · , 5q2+7q+2
2 , and l = 1, · · · , q + 1.

� λ is the step-size.

3.2. Gauss-Newton Algorithm (GNA)

This algorithm can be written as :

θ̂i+1
NLgn

= θ̂i
NLgn

+ µ(JT J)
−1JT

(r − φ(θ̂i
NLgn

)) (12)

where :
� r, φ, and J are defined in section 3.1.
� θ̂NLgn

has the form (10).
� µ is the step-size.

The parameter ε4,3 must be estimated since we suppose we
don’t know the nature of the distribution of the input signal
w(k).

4. A Joint diagonalization-based algorithm

The Fourth-Order System Identification (FOSI) algo-
rithm [4] proposes a solution to the blind identification
problem based on the joint diagonalization of a set of
fourth-order cumulant matrices via a Jacobi technique. The
existing relationships between the taps of a nonminimum
phase system driven by a non-Gaussian white input, and the
(sample) fourth-order cumulant matrices of the output pro-
cess make possible the recovery of the parameters of the
system.

The procedure of joint-diagonalization exploits the fact
that any orthonormalized fourth-order cumulant matrix is
diagonal in the basis of the columns of a unitary matrix Q,
which under certain conditions is unique (up to a permuta-
tion matrix and phase factors). Moreover, it is easy to show
that the entire set of orthonormalized fourth-order cumu-
lant matrices can be approximatively simultaneously diago-
nalized under the same unitary transformation Q. So, after
a preliminary orthonormalization step, a new set of ortho-
normalized matrices is simultaneously diagonalized, giving
rise to the determination of the matrix Q.

The solution of this joint-diagonalization problem is
equivalent to the minimization of the following criterion :

φ (Q,M)
def
=

K∑
k=1

| diag(QHM̄(k)Q) |2, (13)

where M = {M̄(k)|k = 1, . . . , K} is the set of ortho-
normalized cumulant matrices. The system parameters esti-
mates are obtained from an estimate unitary matrix Q̂ mi-
nimizing the criterion (13), plus the orthonormalizing ma-
trix, determined from the eigendecomposition of a posi-
tive definite fourth-order cumulant matrix. The amount of
fourth-order statistical information required by this method
is (2q + 1)

3.
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5. Best 1-D Slice C(q, k) algorithm

The classical C(q, k) algorithm is written as follows [6] :

h(k) =
C4,y(q, 0, k)

C4,y(q, 0, 0)
, k = 1, . . . , q. (14)

This algorithm is very sensitive to cumulants estimation er-
rors and requires exact knowledge about the system order
q. Nonetheless, the amount of statistical information requi-
red is very small, which makes it a very simple and attrac-
tive estimation method. Actually, all the needed informa-
tion may be arranged into a vector c0, defined entrywise as
cτ2(k) = C4,y(q, τ2, k), k = 1, . . . , q, where τ2 is fixed to
zero. Thus, (14) may be rewritten as

h = c0/c0(0), (15)

where h = [h(1) . . . h(q)]T .
We note that it should be possible to change c0 in (15)

by any other cj , j = 1, . . . , q in order to find different pa-
rameter estimations ĥj . Indeed, it is known that the smaller
estimation error (εj = |h − ĥj |2) is obtained by replacing
c0 in (15) by the vector cλ with the maximum two-norm
(max[cH

j cj ]) [10]. This procedure consists in an improved
algorithm that uses τ2 = λ instead of τ2 = 0 in (15). The
new identification formula is then written as

h(k) =
cλ(k)

cλ(0)
=

C4,y(q, λ, k)

C4,y(q, λ, 0)
, k = 1, . . . , q. (16)

This method makes use of only (q + 1)
2 statistical infor-

mation, providing a reduction rate bounded by 8q regarding
the amount of statistics used by FOSI.

6. Simulations

In the simulations presented in this Section, the available
data {y(k)} was generated by two different models, shown
below. In both models the input signal w(k) is a zero-mean
exponentially distributed i.i.d sequence with γ2,w = σ2

w =

1 and γ3,w = 2. The additive noise sequence {v(k)} is an
i.i.d zero-mean Gaussian sequence.

We carried out 200 Monte Carlo simulations with dif-
ferent noise sequences. For each run, we computed the Nor-
malized Mean Square Error (NMSE) defined as

NMSE =

∑q
i=1

(
h(i) − ĥ(i)

)2

∑q
i=1 h2(i)

where h(i) and ĥ(i) are respectively the actual and the es-
timated impulse responses. The results present the fluctua-
tions of the mean NMSE, in dB, against the noise level
(SNR).

Model 1 :

y(k) = w(k) − 2.333w(k − 1) + 0.667w(k − 2) + v(k)

The zeros of the system transfer function H(z) are loca-
ted at 1.9994 and 0.3336. This model has also been used in
[1], [5], and [10]. In this case N = 10240 samples for each
run. The simulation results are summarized in figure 2.
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FIG. 2. Performance of the blind identification me-
thods for the model 1

Model 2 :

y(k) = w(k)+0.1w(k−1)−1.87w(k−2)+3.02w(k−3)

− 1.435w(k − 4) + 0.49w(k − 5) + v(k)

The zeros of the system transfer function H(z) are loca-
ted at −2, 0.7±j0.7 and 0.25±j0.433. This model has also
been used in [5]. In this case N = 40960. The simulation
results are given in figure 3.

The figures 2 and 3 demonstrate the effectiveness of the
first approach, concerning the methods using nonlinear op-
timization techniques. In figure 3, the Gradient and Gauss-
Newton algorithms are much more powerful than FOSI and
C(q, k) with Best 1-D Slice. Notice, however, that these lat-
ter ones use only fourth-order cumulants, while the nonli-
near optimization approaches utilize both third and fourth-
order cumulants. We note that increasing model order q se-
verely affects the performance of these algorithms.

7. Conclusion

In this paper, we have compared four different solu-
tions for the problem of blind identification of nonmini-
mum phase systems using third and fourth-order cumu-
lants. In terms of quality of parameter estimation, the

                               - 117 -                               - 117 -                               - 11 -                               - 11 -                               - 11 -



−10 −5 0 5 10 15 20 25 30

−20

−10

0

10

20

30

40

50

SNR(dB)

N
M

S
E

(d
B

)

C(q,k) with Best 1−D Slice
FOSI
Gradient
Gauss−Newton

FIG. 3. Performance of the blind identification me-
thods for the model 2

nonlinear optimization-based methods over performed the
joint-diagonalization approach as well as the C(q, k) al-
gorithm incorporating Best 1-D Slice, especially for hi-
gher order models. Nevertheless, complexity of nonlinear
optimization-based algorithms remain much higher compa-
ratively to the other two methods.
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