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2. Ecole Nationale des Sciences de l’Informatique de Tunis, Tunisie
Campus universitaire La Manouba, 2010 Tunisie

khaled.ghedira@isg.rnu.tn

Abstract

Multi-Agent Systems (MAS) are an efficient ap-
proach to deal with distributed complex problems. How-
ever, they are slightly suited to optimization ones. In
order to tackle this problem we present a model to
specify Multi-Agent Systems with the Constraint Sat-
isfaction Problem (CSP) formalism. It allows to take
advantages from CSP solving algorithms and to deal
with optimization problems. For this purpose we spec-
ify agents as Constraint Satisfaction and Optimization
Problems, i.e. CSOP and consequently the MAS as a
Distributed CSOP (DCSOP). We illustrate the inter-
est of our approach on the antennae parameter set-
ting problem which is an example of distributed con-
strained problem. We implement this specification to
validate the optimization function model that we pro-
pose.

1. Introduction

The resolution of optimization problems with a
multi-agent approach remains arduous due to the diffi-
culty to design both agent architectures and distributed
optimization algorithms. This paper proposes an ap-
proach to specify MAS with the CSP formalism, that
allows in particular to deal with over-constrained prob-
lems and optimization ones (for instance in distributed
systems, networks and radiomobile networks).
We claim that combining the CSP formalism and
the multi-agent approach allows to cope with com-
plex problems by achieving some of the benefits of

both CSP techniques (centralized and distributed al-
gorithms) and multi-agent models/properties (robust-
ness, flexibility, proactivity, etc).
Last decades witnessed significant researches relating
to MAS approaches as they provide efficient modeling
of distributed complex problems. An important num-
ber of agent formalisms and architectures is present in
the literature. A non-exhaustive list comprises the sub-
sumption architecture [1], the Belief Desire Intention
(BDI ) architecture [6], the BRIC formalism [3], the
Gaia methodology [10], etc. These different approaches
for agent specification were proved to be efficient to
deal with some aspects of the multi-agent problemat-
ics, such as inter-agent communication. It is the case
with the BDI architecture which has been extended to
deal with communication between agents. The BDI ar-
chitecture is also well suited for describing an agent’s
mental state. Moreover, some architectures are adapted
to reactive models as the subsumption one. However,
most of these models don’t include tools or algorithms
for optimization problem solving. At the opposite, the
approach we propose consists to express a multi-agent
system through a formalism presenting existing reso-
lution techniques, i.e. the CSP one. We focus in this
paper on the expression of MAS within the CSP for-
malism. We name this MAS rewriting the specification
phase.
The remainder of the paper is organized as follows: sec-
tion 2 presents the main steps and objectives of our ap-
proach. Section 3 presents how the elements of a MAS
may be specified with the CSP formalism. Then in sec-
tion 4 we illustrate our model on the antennae param-
eter setting problem, through its specification and its
implementation within a multi-agent platform. Finally,
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the last section is devoted to the conclusion and fur-
ther research.

2. The specification steps

The Multi-Agent approach is an efficient model to
decentralised systems since they are too large to be
solved by a single centralized approach. The request
we focus on is how to define and engineer MAS for op-
timization problems ?
To deal with this challenge, we propose to use the CSP
formalism to specify and program multi-agent systems.
The primary driving force for this choice is that CSP
is a powerful and generic formalism to simply repre-
sent complex problems.
The key idea of the paper is to define an agent as a
CSOP, i.e. a Constraint Satisfaction and Optimization
Problem and consequently a MAS as a DCSOP, i.e. a
Distributed Constraint Satisfaction and Optimization
Problem.
Figure 1 illustrates the proposed approach. The first
step precises that we must dispose of a multi-agent
model of the problem to deal with (all the elements of
the problem must be agentified). We assume that the

Figure 1. The specification steps

model is given in terms of agents characteristics and
their interactions. Note that the agentification of the
elements of the problem is not the subject of the pa-
per. Our contribution concerns the formal specification
of the agent model via the CSP formalism (specifica-
tion step (2) of figure 1). In our approach, every agent
is defined by a CSOP, where the objective functions
are translated to optimizing functions thanks to the
Satisfaction-Altruism model [2] (presented in next sec-
tion). Consequently the MAS is defined by a DCSOP.
Then, the resulting model allows to use CSP based

algorithms for the problem solving. Next section de-
scribes the second step, i.e. the specification.

3. Modeling a MAS as a DCSOP

3.1. CSP, CSOP and DCSOP definitions

Let’s recall the CSP, CSOP and DCSOP definitions:
A Constraint Satisfaction Problem [9] is the tuple <
X,d,C >, where X is a set of n variables, X =
x1, ..., xn, d : X→ D ⊆ R is a mapping between a vari-
able and the domain of its possible real values and C
is a collection of m constraints C = C1, ...,Cm. Each
constraint is a proposition over a subset of the avail-
able variables S ⊆ X, called the scheme of the con-
straint. A solution to a CSP is an assignment of val-
ues that maps all variables in X with a value compat-
ible with d that satisfies all constraints in C.
A Constraint Satisfaction and Optimization Problem
is a CSP with an associated objectif function F, i.e., it
is a tuple < X,d,C,F > where F : S⊆ X → R. A so-
lution of a CSOP is a solution of the underlying CSP
that maximizes the objective F.
Finally, a DCSOP is a Distributed CSOP in which vari-
ables and constraints are distributed among multiple
agents. A solution to a DCSOP is an instanciation (or
several ones) that satisfies all inter-agent/intra-agent
constraints and optimizes the global objective function.

3.2. Agent properties

We distinguish for an agent two basic compo-
nents: the individual agent properties and the interac-
tive properties:
The individual agent properties are defined by its own
abilities, e.g. its resources, intentions, engagements,
satisfaction function, memories and experiences, emo-
tions, beliefs, expertise, explicit plans, information on
acquaintances, tasks or actions, etc (see [3] for an ex-
haustive list).
The interactive properties are defined by the inter-
actions between agents. We distinguish three forms
of interaction: cooperation, coordination and nego-
tiation. They are supported by direct and indirect
communication. In this paper we focus on the commu-
nication via direct messages exchange. We then iden-
tify several types of messages derived from work on
speech-act-theory. A generic catalogue was identi-
fied [8], it consists of five classes of messages that
diverge on the content level and on the effect pro-
duced on the recipient agent. We quote assertive mes-
sages, directive messages which involves interrogative
and executive messages, promissing messages, expres-
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sive messages and declarative messages. These kinds
of messages as well as interaction forms are differently
considered in the proposed model. Note that commu-
nication in MAS implies that the obtained DCSOP
presents dynamic aspects: variables, values and con-
straints can change and evolve.
Since we propose to model an agent by a CSOP, we
present in the following part the analogy between the
two concepts by identifying for an agent what can rep-
resent variables, values, constraints and optimiza-
tion functions.

3.3. The agent’s variables

From the previous agent definition, we can infer two
classes of variables:

1. Variables induced from the individual properties:
every elementary property identified previously
will henceforth refer to a variable, and will increase
the number of variables relative to the CSOP.

2. The second type of variables emerges from inter-
agent interactions, these variables are conse-
quent to messages exchange. For example an
agent A can advise an agent B to take into ac-
count a new variable in its reasoning process. How-
ever an agent can infer from its interactions that
it has to add by itself a variable to its knowledge.

Formally the set of CSOP variables ralating to an agent
i at time t is defined as following:

Vi = Vcsop = Vproperties ∪ Vinteractions (1)

VProperties = {VP1, VP2, ..., VPn} (2)

Where VPi represents an individual property among
the assortment of properties already identified.

Vinteractions = {VI1, VI2, ..., VIm} (3)

Where VIi represents a variable generated from inter-
agent interactions (communication).

3.4. The agent’s values

The domain of variable values, can be divided in two
sub-domains:

• The first one corresponds to the initial values (i.e.
in the initial state of the system).

• The second one is constructed dynamically from
interactions.

This means that every type of message will bring new
values to variable domains and can also suppress val-
ues or also modify some variable values (except direc-
tive ones that will be interpreted as inter-agent con-
straints, see section 3.3).
Formally, we can set the values domain of variable as
the union of two sub-domains:

• Domaininitial: the agent’s initial values.

• Domaininteractions: values brought from messages.

Thus for the variable j we have:

Dj = Djinitial ∪Djinteractions (4)

3.5. The agent’s constraints

In the CSP formalism, the constraints concern the
variable set, they represent restrictions on the set of
values that can be taken by a variable. Various im-
plementations are possible for constraints: in intention
by functions, arithmetic inequalities, etc, or in exten-
sion by the authorized values. Two types of constraints
in multi-agents systems can be identified:

• Internal constraints (or intra-agent): whose vari-
ables are internal to an agent.

• External constraints (or inter-agent): they are due
to executive messages.

To summarize, the set of constraints is the following:

C = Cintra ∪ Cinter (5)

Cintra = {C1, C2, ..., CL} (6)

with L intra-agent constraints, where a given constraint
Ci is defined on a set of variables:

Ci : {Vi1, Vi2, ..., Vini} ⊂ VProperties (7)

Cinter = {C1, C2, ..., CK} (8)

With K inter-agent constraints, where a given con-
straint Cj is defined on a set of variables :

Cj : {Vj1, Vj2, ..., Vjnj} ⊂ VCSOP (9)

3.6. The agent’s optimization function

By definition an agent pursues some goals. It is
driven by a set of tendencies, represented by individual
objectives or satisfaction functions to achieve. There-
fore the agent is always trying to satisfy its individual
objectives while minimizing the harmful interactions
(conflicts) and maximizing the positive ones (coopera-
tion) in relation to the other agents and the environ-
ment [3].
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The agent’s behavior is based on the maximization
function concerning personal interest and the collective
ones via interaction with the other agents. We model
this behavior by an optimization function, thanks to
the satisfactions model proposed in [7]. Formally, the
function to optimize is the sum of three sub-functions
to satisfy:

• The satisfaction of the own goals or personal sat-
isfaction, named P(t), expressing personal agent’s
goals, intentions and engagements.

• The interactive satisfaction I(t), depending on the
interaction of the agent with the others (measur-
ing conflicts, cooperation, indifference, etc).

• The acquaintances satisfaction, noted E(t) (Empa-
thy), which is computed from other agents satis-
faction, representing the altruism of the agents [7].

Therefore, we have for an agent i, at time t, the follow-
ing instantaneous optimization function:

SATi(t) = αPi(t) + δIi(t) + βEi(t) with α + β + δ = 1
(10)

Coefficients α, β and δ are time-independent and
may vary from an agent to another following the be-
havior we need. The computation of P, I and E
satisfactions depends on the problem to solve. How-
ever, keys elements to compute them are given
in [7] [2] and are used in the next applicative sec-
tion.

4. Application to the antennae parame-
ter setting problem

4.1. Overview

We introduce an application based on a real prob-
lem, the antennae parameter setting problem. This
problem fits into the global process of radiomobile net-
work design [5] which involves three sub-problems: po-
sitioning, parameter setting and frequency allocation.
We have focused on the parameter setting problem
which concerns the maximization of the antenna cover-
age, the minimization of interferences between anten-
nae and the optimization of the handover (the interfer-
ence and handover concepts will be defined later). Here
the main problem is to determine an optimal adjust-
ment of the antenna emission power enabling the com-
munication with a mobile phone.
The antennae are distributed upon the surface to cover,
which is modelled as meshes. For each mesh a propaga-
tion model enables to predict the local variation (Fade)
of the radioelectric field emitted by every antenna given

Figure 2. The antennae parameter setting prob-
lem

the altitude and the type of ground (see figure 2). To
simplify our illustration, we just consider omnidirec-
tional antennae, characterized only by their power pa-
rameter.
The antennae parameter setting problem is naturally
distributed. Thus we identified two types of agents:

• Agent Antenna: it is characterized by its own vari-
ables, e.g. Power, its constraints relating to cover-
age, its interference and handover rates.

• Agent Environment: we agentify the environment
to be able to deal with the problem of not covered
meshes more cleverly than from the antennae lo-
cal point of view. The environment variables are
the radioelectric field coming from each antenna
(Fade), the number of not-covered meshes (Nb-
not-cov) and the number of over-interfered zones
(Nb-over-inter). As the agent Environment is par-
celled into a set of mesh agents, we define an over-
interfered zone as a mesh which has interferences
and surrounded by meshes that have also interfer-
ences.

4.2. Variables and Values

The agent Antenna and the agent Environment pos-
sess respectively the following variables sets:
VAntenna = {Power, NC, E} = VProperties

NC is the quantity of traffic elapsed by the antenna
ai (NCai) and E is the maximum traffic authorized
for the same antenna (Eai).
VEnvir = {Nb− not− cov; Nb− over − inter}
∪ {Fadem1; Fadem2; ...; Fademx} = VProperties

As we break up the environment into a set of meshes
(x meshes), the variable Fade is defined for each mesh
(Fadem1; Fadem2; ...; Fademx).
The values sets are:
DPower = Dinitial ∪Dinteractions where Dinitial is the
value interval given by the operator and Dinteractions
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contains values imposed by the agent Environment (see
constraints below).
Concerning the agent Environment, the domains of
the three variables are included in Dinitial, we don’t
have values induced from the interaction process, i.e.
Dinteractions = ∅.

4.3. Constraints

4.3.1. Intra-agent constraints: There is one single
intra-agent constraint relating to the agent Antenna.
It expresses that the traffic quantity for the antenna ai

must be lower than the maximum traffic authorized for
this same antenna (Eai

):

NCai
≤ Eai

(11)

4.3.2. Inter-agent constraints

• Coverage constraint: to enable the communication
with a mobile phone in a mesh m, i.e. to ensure
the mesh coverage, the field received from an an-
tenna ai must, by definition, be greater than a
quality threshold (Gquality), namely:

covai
m : F ai

m ≥ Gquality (12)

Where F ai
m = Powerai − Fadem.

Gquality, as well as Ghandover and Gsensibility in
the following constraints, are constants belonging
to the agent Environment.
Note in addition that every mesh must be covered
at least by one antenna which implies the follow-
ing constraint :

∀ m (a given mesh) ∃ ai such that covai
m (13)

• Handover constraint: the notion of handover is
used to enable a mobile phone to go from an area
covered by one antenna to an area covered by
another antenna. A mesh m established a han-
dover relationship between two antennae if it is
covered by both and if the difference between the
fields received is under the handover threshold
(Ghandover):

Hai,aj
m =

⎧

⎨

⎩

cov ai
m

cov aj
m

|F ai
m − F

aj
m | ≤ Ghandover

(14)

• Interference constraint: a mesh m covered by an
antenna ai is interfered by another aj if the field re-
ceived from aj is greater than a sensibility thresh-
old (Gsensibility):

Iai,aj
m =

⎧

⎨

⎩

cov ai
m

F aj
m ≥ Gsensibility

|F ai
m − F

aj
m | > Ghandover

(15)

Our approach allows us to define two other inter-agent
constraints, they are defined by two executive mes-
sages:
If the number of not-covered meshes is not null, the
environment sends an executive message towards the
agents Antenna situated in the neighborhood of these
meshes. The agents Antenna consider this message as
an inter-agent constraint imposing the change of the
Power value (increase of Power).
In the same way, if the number of over-interfered zones
is greater than a fixed threshold, the agent Environ-
ment sends also an executive message towards the close
antennae. This message implies also a change of the
Power value (decrease of Power).

4.4. Optimization functions

4.4.1. The agent Antenna: it has personal, inter-
active and altruistic goals. The personal objective con-
sists in the coverage maximization:

Maximize (NCai) (16)

Pai
(t) = NCai

is the personal satisfaction of an agent
ai at time t.
The interactive goal consists of two sub-objectives :

• Minimizing interferences:

∀aj Minimize
∑

NIaiaj (17)

NIaiaj represents the number of meshes covered
by the antenna ai and interfered by the antenna
aj .

• Optimizing the number of handover, i.e min-
imizing the difference between the optimal
number(NHoptimal) and the real number of han-
dover (NH ):

Minimize |NHoptimal −NH| (18)

The interactive satisfaction which takes into account
the interferences and the handover constraints is then
defined as follows (Imax is a positive constant):

Iai
(t) = Imax − |NHoptimal −NH| −

∑

NIaiaj (19)

The altruistic goal consists on maximizing the acquain-
tances satisfaction [7], for the agent Antenna it is com-
puted as following:

Eai
(t) =

∑

j∈ neighbours(ai)

SATaj(i 
= j) (20)

The optimization function for an agent Antenna ai is:

SATai
(t) = αPai

(t) + δIai
(t) + βEai

(t) (21)
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These three sub-satisfactions will step-in defining the
antenna power variation (see next section). Since the
principal goal for an agent Antenna is first the coverage
maximization, second the interferences minimization
and third the handover optimization, we set α > δ > β.

4.4.2. The agent Environment: it has only per-
sonal and altruistic goals. The personal goal consists
on maximizing the covered meshes, it is expressed as
following:

PE(t) = Card (m, such that ∃ ai with covai
m ) (22)

The altruistic goal consists in maximizing the antennae
satisfaction:

EE(t) =
∑

i∈ antennae set

SATai (23)

To ensure an efficient altruistic behavior the environ-
ment sends executive messages (decrease power) only
to the agents Antenna affected by the over-interfered
zones. These zones are computed by the agent Environ-
ment since it has a global vision of the system. Con-
sequently the optimization function of the agent Envi-
ronment is :

SATE(t) = αPE(t) + βEE(t) with α + β = 1 and α > β
(24)

The coefficient α is dominating, since the environment
seeks principally to maximize the number of covered
meshes.
Thus, we define the DCSOP global optimization func-
tion as the weighted sum of the equations (21) and
(24):

SATGlobal = αSATai
(t) + βSATE(t) (25)

Since the global objective of the system is to maximize
the coverage, minimize the interferences and optimize
the handovers, we assign more importance to antennae
satisfaction, justifying α > β.

4.5. Experiments

In this section we present a distributed solution,
based on the previous specification, to optimize the an-
tennae parameter setting. We took use of the Madkit
platform to implement our approach. Madkit is a mod-
ular and scalable multi-agent platform written in Java
and built upon the AGR (Agent/Group/Role) organi-
zational model [4]. This platform allows to show the
system evolution and to display curves in real time.
It must be emphasized that the data used in exper-
iments correspond to real values belonging to France
Telecom.

Figure 3. Example of an evolution sequence of
the antennae parameter setting problem imple-
mentation; Curves represent the global satis-
faction evolution; Black areas in (b) represent
interferences; Gray-light areas in (b) represent
handovers
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To evaluate our optimization function specification, we
have implemented a reactive MAS approach. Agent be-
haviors are simple and based on the functions defined
in section 4.4:

• Antennae behavior: the power changes following
the SATai(t) (eq. 21). The power value decreases
when SATai(t) falls, otherwise it increases.

• Environment agent behavior: if SATE(t) value
goes under a specific threshold, the agent sends to
antennae which are close to over-interfered zones
an executive message to reduce their power.

Figure 3 shows an example of this implementation. In
this example we have 6 antennae and the environment
is a grid of 55x63 meshes. Each antenna coverage is
represented by a different color. On the left part of the
snapshots we visualize coverage, interferences (black ar-
eas) and handover (gray light areas).
The system is initialized with huge values for the anten-
nae power. Figure 3.a shows this initial state by draw-
ing only the antennae coverages (interferences and han-
dovers areas are not represented). When the system
starts, as an immediate consequence we obtain an ex-
plosion of the handovers and the interferences number
(see figure 3.b). Forthwith the system reacts and we no-
tice in figure 3.c a decrease of the interferences and the
handovers number but at the expense of the coverage.
At the same time on the right part of the snapshots,
the curves plot the global optimization function (equa-
tion 25). Note that the presented curve contains only
the best values.
As is shown by the figure 3.d the curve has an asymp-
totic trend which indicates that the satisfaction has
converged and there is no improvement any more (here
the convergence is reached in about 800 cycles). This
shows that agents search to optimize their functions fol-
lowing an exploration phenomenon.
This first result has been obtained quickly after the
problem modeling step. Its shows the relevance of our
model and allows to plan the use of DCSP algorithms
and other distributed solving techniques.

5. Conclusions

In this paper we have provided a generic tool to spec-
ify MAS with the CSP formalism. Generally the con-
trary is proposed, i.e. using agents to solve CSP. That
made our approach an original one.
Given a problem and its multi-agent model, we have
showed how the CSP formalism allows to extract
agent’s variables, constraints and optimization func-
tions. The knowledge gained at modeling an agent as a

CSOP and optimization functions is of a singular inter-
est. It determines a formal expression of the MAS and
allows to solve or to optimize the problem with DCSP
approaches and tools.
We illustrated our specification approach on the an-
tennae parameter setting problem and we showed the
feasibility and the interest of such a model. In par-
ticular we have explored a satisfaction-based approach
for the specification of optimization functions. Its pro-
gramming with a multi-agent platform shows a first
interesting result in the optimization problem frame-
work. More generally, our approach allows to handle
numerous parameters and constraints of a MAS in a
rigorous way (as shown in the radiomobile network ap-
plication).
Interesting future directions regard the use of our
approach with CSP solving algorithms, e.g. Asyn-
chronous Back-Tracking and Maintaining Arc Consis-
tency.
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