
Building Domain-specific Ontology from Data-intensive Web Site: An HTML

Forms-based Reverse Engineering Approach

Sidi Mohamed Benslimane

Computer science De-

partment, University of

Sidi Bel Abbes, Algeria

Benslimane@univ-sba.dz

Mimoun Malki

Computer science De-

partment University of

Sidi Bel Abbes, Algeria

Malki_m@yahoo.com

MustaphaKamal Rahmouni

Computer science Depart-

ment, University of Es-senia

Oran, Algeria

Rahmouni@univ-oran.dz

Djamal Benslimane

LIRIS Laboratory

University of Lyon 1

Villeurbanne, France

Djamal.benslimane@liris.cnrs.fr

1. Introduction

The actual web has been moving away from static,

fixed web pages to dynamically-generated at the time

of user request. This kind of web site is called data-

intensive web site [1], and usually realized using rela-

tional databases. Data-intensive web pages are charac-

terized by an automated update of the web content and

a simplified maintenance of the web design [2]. Never-

theless they suffer from two limitations. First, they

form a hidden web since its content is not easily acces-

sible to any automatic web content processing tools

including the search engine indexing robots. Second

the content of the database-driven web pages presented

by using HTML is not machine-understandable. The

next generation of the web, the semantic web, seeks to

make information more usable by machines by intro-

ducing a more rigorous structure based on ontologies.

Lately, ontologies have become the focus for research

in several other areas, including knowledge engineer-

ing and management, information retrieval and inte-

gration, the semantic web, and e-commerce.

In this paper we propose a novel and integrated ap-

proach for a semi-automated migration of data-

intensive web pages into semantic web and thus, make

the web content machine-understandable. The best

approach seems to rely on reverse engineering [3]

rather than on semantic annotation [4], which is time

consuming and error-prone.

Several researches have been done on relational data-

bases reverse engineering, suggesting methods and

rules for extracting entity-relationship and object mod-

els from relational databases [5, 6, 7, 8]. Recently,

some approaches that consider ontologies as the target

for reverse engineering have been proposed [2, 9, 10,

11, 12, 13]. Applicability of the existing approaches

can be limited by the completeness of input informa-

tion and its correctness.

This paper is organized as follows: In Section 2, we

explain the overall reverse-engineering architecture

and Section 3 details our proposed approach, Whereas

Section 4 contains conclusion remarks and future

works.

2. Our Approach

Our approach enriches the semantics of data by pro-

viding additional ontological entities [14]. It uses the

information extracted from both HTML-forms and

HTML-tables structure and instances as a data-

intensive web application reverse engineering input.

HTML-forms are often the most popular and conven-

ient interfaces for entering, changing and viewing data

in data-intensive web pages and, therefore, important

information can be obtained by analyzing them.

The proposed architecture of our approach is depicted

in Fig 1. The main components are: The Extraction

Engine which consists of tree sets of Extraction Rules.

The Transformation Engine which consists of two sets

of Transformation Rules. The Migration Engine which

consists of a set of data migration rules.

Our approach articulates around six steps performed

by the six set of rules. To illustrate these steps, we’ll

use an HTML pages in Fig. 2. This returns as the

query result for booking flight at

http://www.airalgerie.dz.

3. Reverse engineering process

3.1. Analysis of HTML pages structure

The main goal of this phase is to understand the form

meaning and explicit its structure by analyzing HTML

forms to identify its components and their interrela-

tionships and extract a form model schema. A form

model schema was originally proposed, suitable for

databases reverse engineering task [15].

2-9525435-0 © IEEE SITIS 2005 - 236 -- 236 -- 235 - - 235 - - 235 -0000000000- 235 - - 235 - - 236 - - 237 - - 237 - - 238 - - 239 - - 240 - - 240 - - 240 - - 240 - - 240 - - 240 - - 240 - - 240 - - 246 - - 246 -

Fig. 1. Data-intensive web application reverse engi-

neering Architecture

3.1.1 The form model. The model allows abstracting

any database form, that is, to make explicit its compo-

nents, fields as well as objects, and their interrelation-

ships. This model is similar but not identical to the

model presented in [16]. Basically, this model consists

of: Form type: Is a structured collection of empty

fields formatted to communicate with databases. Struc-

tural units: Is a group of homogeneous pieces of in-

formation, that is, an object that groups closely related

form fields. Form instance: Is an occurrence of a form

type. This is the extensional part obtained when a form

template is filled in with data. Fig 2 is an instance of

the “Booking form” and “Program of flight” forms

type. Form fields: Is an aggregation of a caption with

its associated entry. Caption is pre-displayed on the

form and serves as a clue as what is to be filled in by

the respondent as well as a guide to enter or read it on

the form. Underlying source: This is a structure of the

relational database (i.e. a relational schema. Relation-

ships: this is a connection between structural units that

relates one structural unit to another. There are two

kinds of relationship: association and inheritance. Con-

straint: This is a rule that defines what data is valid for

a given form field.

Fig. 2. Personalised Ontology extraction from an

HTML forms

3.1.2. Form model schema identification rules. The

rules below briefly summarize the transformation rules

used to identify the form model constructs, they are

part of the extraction engine component in Fig 1.

Rule 1: Identifying form instances. In order to clearly

distinguish different kinds of information in the docu-

ment, the web pages are usually split to multiple areas.

Each area is crated using specific tags. For our ap-

proach we perform a filtering process and consider

both the section between the open and closing <form>

tag used to access and updates the relational databases

and the section between the open and closing (<table>,

<td>,<tr>,,) tags returned as the query results

and representing a particular view of the relational

databases.

Rule 2: Identifying linked attributes. Linked attributes

are identified by examining the HTML code for struc-

tural tags such as <thead> and <th> [17]. If the linked

attributes aren’t separated with the structural tags

(merged data), we can use visual cues [18, 19]. This

approach typically implies that there will be some

separators that help users split the merged data.

Rule 3: Identifying structural units. To determine a

logical structure of HTML page, we can use visual

cues [18] E.g. the users might consider the FirstName,

LastName, and Age in Fig. 2 as a whole group (pas-

senger), just because they are specifications too.

- 237 -- 237 -- 236 - - 236 - - 236 -0000000000- 236 - - 236 - - 237 - - 238 - - 238 - - 239 - - 240 - - 241 - - 241 - - 241 - - 241 - - 241 - - 241 - - 241 - - 241 - - 247 - - 247 -

Rule 4: Identifying relationships. The association can

be indicated by the fact that the two structural units

appear at the same page. If the two structural units

come together, they might be logically related to each

other. We would also identify an association relation-

ship between two structural units using hyperlinks. By

clicking on a hyperlink in one structural unit, we can

go to another structural (possibly at another page).

3.2 Extraction of form XML-schema

Once the structure of the form type is extracted, the

corresponding XML-schema is generated based on a

set of translation rules between concepts of form mod-

els and those of the XML schema.

3.2.1. XML-schema generation rules. The transla-

tion is done systematically by the following set of

transformation rules.

Rule 1: Each structural unit in the form type is trans-

lated as a complexType element in the corresponding

XML schema. Example: the structural unit “passen-

ger” is translated as follow:

<xsd: complexType name=”passenger”>

…

</xsd: complexType>

Rule 2: The rule 1 is applied recursively on the com-

plex structural unit components. Example: The com-

plex field “Period from (Day, month, Year)” in the

“date departure” structural unit is translated as a Com-

plexeType element too.

<xsd: complexType name=”PeriodFrom”>

…

</xsd: complexType>

Rule 3: Each form field of the structural unit is trans-

lated in a sub-element of the corresponding com-

plexeType element. The primitive type of the element

is the one of the field. Example: the field “FirstName”

is translated as a string type:

<xsd: element name=”firstname” type=”xsd:string”/>

Rule 4: If the structural unit contains some simple fill-

ing fields, the corresponding ComplexeType element

takes as occurrence “minOccurs = 1” and “maxOccurs

= 1"

Rule 5: If the structural unit contains some multiple

filling fields, the corresponding ComplexeType ele-

ment takes as maximum occurrence “maxOccurs =

"*"”.

Rule 6: The rules 4 and 5 are applied recursively on

the form fields of each structural unit.

3.2.2. Construction of hierarchical structure of

forms. In order to have a precise view of the hierar-

chical relationships of a form and to clearly understand

its meaning and facilitate the interpretation and the

extraction of the domain semantics, the form XML

schema is transformed in a form hierarchical structure

without loss of information. Formally, the hierarchical

structure of a form is defined by the Tiplet (N, NT, L)

where: N: represent no terminal nodes of the hierarchi-

cal structure, TN: represent terminal nodes of the hi-

erarchical structure, L: represent the parent-child link

between nodes. This process, which is automatic and

transparent to the designer, constructs the hierarchical

structure in four steps: Defining the root node (with

level 0) whose name is the form’s title; Transforming

all complex elements into no-terminal nodes (with

level 1). This step transforms recursively, the complex

sub-elements into a no-terminal sub-nodes (with level

2, 3, etc); Transforming all simple elements and attrib-

utes into terminal nodes; Identifying the link type

(mono-valued or multi-valued) between two nodes of

the tree according to the occurrence value (maxoc-

curs=1 or maxoccurs=n).

3.3. Extraction of the domain semantics

The goal of this phase of extraction is to derive the

relational sub-schemas of forms from their hierarchical

structure and their instances according to the physical

schema of the underlying database.

3.3.1. Form relations extraction. The identification

of form relations and their primary keys respectively,

consists of determining the equivalence and/or the

similarity between structural units (nodes) of hierar-

chical structure and relations in the underlying data-

base. This is a basis point from a reverse engineering

point of view [15]. A node of a form hierarchical

structure may be either: Equivalent to a relation in the

underlying database, i.e., these two objects (node and

relation) have a same set of attributes; Similar to a

relation, i.e., its set of attributes is a subset of the one

of the relation; A set of relations, i.e., its set of

attributes regroups several relations in underlying

database. Also, for dependent nodes (or form relation),

primary keys are formed by concatenating the primary

key of its parent with its local primary key. This

process of identification is semi-automated because it

requires the interaction with the analyst to identify

objects that do not verify proprieties of equivalence

and similarity.

- 238 -- 238 -- 237 - - 237 - - 237 -0000000000- 237 - - 237 - - 238 - - 239 - - 239 - - 240 - - 241 - - 242 - - 242 - - 242 - - 242 - - 242 - - 242 - - 242 - - 242 - - 248 - - 248 -

While applying this process on the hierarchical struc-

ture of “Booking Form” and the physical relational

schema of underlying database, we extract the follow-

ing relational sub-schemas:

Passenger (PassengerID, FirstName, LastName, Age)

City (CityID); DepartureCity (CityID, Name)

ArrivalCity (CityID, Name) ; Date (DeparatueDate)

From the “program flights” form we identify the fol-

lowing relational sub-schemas:

DepartureHour (Dep_HourID, type)

ArrivalHour (Arr_HourID, type); Plane (PlaneID, Ca-

pacity) ; Flight (ID, DepartureCityID, ArrivalCityID,

Dep_HourID, Arr_HourID, PlaneID)

From the relationships among hierarchical structure of

“Booking Form” and “program flight” forms we iden-

tify the following relational sub-schemas:

Book (PassengerID, FlightID, DepartureDate, Class)

LeavingFrom (FlightID, DepartureCityID)

GoingTo (FlightID, ArrivalCityID)

3.3.2. Functional dependencies extraction. The ex-

traction of functional dependencies from the extension

of database has received a great deal of attention [20,

21, 22] In our approach we use the algorithm intro-

duced by [15] to reduce the time for exacting func-

tional dependencies by replacing database instances

with a more compact representation that is, the form

instances. While applying this algorithm on the sub-

schema of “program of flights” and their instances, one

finds the FDs: Flight.ID DepartureCity.CityId ;.

Flight.ID ArrivalCity.CityID

3.3.3. Inclusion dependencies extraction. The time of

this process is more optimized with regard to the other

approaches [15, 5] because the possible inclusion de-

pendencies are verified by analyzing the form exten-

sions which are more compact representation with re-

gard to the database extension. In this algorithm, at-

tributes of dependencies are the primary keys and for-

eign keys. Thus, the time complexity is reduced to the

test of the inclusion dependency on the form instances.

The set of the inclusion dependencies extracted is:

Book.FlightID << Flight.FlightID

Book.PassengerID << Passenger.PassengerID

3.4. Transforming the relational sub-schema of

form into UML sub-schema

The task of Conceptual Modelling plays a crucial role

in the process of information systems development.

Conceptual models translate and specify the main data

requirements of the user requirements in an abstract

representation of selected semantics about some as-

pects of a real-world domain.

3.4.1 The Transformation process. The transforma-

tion is usually a collection of mapping rules that re-

place constructs in the form relational schema with

conceptual entities in the UML model. Our rules are

similar to those used in [8] to perform a transformation

into an object oriented model.

Rule 1: Identification of object class. The general as-

sumption is that each base relation is mapped into an

object class. These object classes have the same attrib-

utes as those contained in the relations. The relation

Passenger (PassegerId, FirstName, SecondName,

Age) is translated to class.

Rule 2: Identification of binary association. The for-

eign keys of class-relation and the corresponding func-

tional dependencies identify a binary association be-

tween class-relations. Therefore, this referential link is

translated in binary association in the UML model.

The target will be, in general, a role attribute typed by

the other class.

Rule 3: Identification of association class. For every n-

airy class-relation whose primary key is entirely com-

posed of foreign keys, we create an association class

between all the classes corresponding to the class-

relation that foreign keys refer to. The relation Book

(PassegerID, FilightID, DepartureDate, Class) is

translated into Association-class.

Rule 4: Identification of inheritance relationships.

Extracting inheritance relationship from a relational

schema usually requires behavioral information. Every

pair of relations (R1,R2) that have the same primary

key (noted X) and the corresponding inclusion de-

pendencies (i.e., R1:X << R2:X) may be involved in

an inheritance relationship, i.e., R1 “is-a” R2.

The Relations City, DepartureCity and ArrivalCity

have the same primary key (CityID) and the corre-

sponding inclusion dependencies:

DepartureCity.CityID << City.CityID;

ArrivalCity.CityID << City.CityID

Therefore City is a superclass and Departure_city and

ArrivalCity are a subclass.

3.4.2 Integration of UML sub-schema. In the prece-

dent phase of reverse engineering using forms as ma-

chine-analyzable source, object oriented sub-schemas

was derived from relational sub-schemas. These object

sub-schemas will be merging into a global object-

oriented schema. We assume, in agreement with [23]

- 239 -- 239 -- 238 - - 238 - - 238 -0000000000- 238 - - 238 - - 239 - - 240 - - 240 - - 241 - - 242 - - 243 - - 243 - - 243 - - 243 - - 243 - - 243 - - 243 - - 243 - - 249 - - 249 -

that the integration schema process consists in two

phases: comparison and conforming of schemas, and

merging and restructuring of schemas. The comparison

phase performs a parities comparison of objects (of the

sub-schemas) and finds possible objects pairs, which

may be semantically similar with respect to some pro-

prieties, such as synonyms of equal primary key attrib-

ute and equivalent of classes. The conforming is a va-

riety of analysts assisted techniques that are used to

resolve conflicts and mismatched objects. The merging

and restructuring phase generates an integrated schema

from two component schemas that have been com-

pared. For more details see [8].

3.5. Mapping of the global UML schema

into OWL ontology

In this section we propose a rules set that establish a

connection between UML and Web-based ontology

language. The rules below briefly summarise the trans-

formation rules used in the mapping between UML

and OWL constructs.

Rule 1: Both OWL and UML are based on classes. So,

in order to translate the UML class passenger, a class

is declared by assigning a name to the relevant type.

Example: <owl: class rdf: ID=”Passenger”/>.

Rule 2: OWL distinguishes two kinds of properties, so

called object properties and datatype properties. First,

an instance of class ownedAttribute Property would

translate as properties whose domain is Class and

whose range is the type of Property. The UML owne-

dAttribut instance would translate to

owl:ObjectProperty if the type of Property were a

UML class, and owl:DatatypeProperty otherwise. Sec-

ond an instance of a binary UML association translates

directly to an owl:ObjectProperty.

Rule 3: N-ary relation among types T1...TN is for-

mally equivalent to a set R of identifiers together with

N projection functions P1,.., PN, where Pi:R -> Ti.

Thereby N-ary UML associations are translated to

OWL classes with bundles of binary functional proper-

ties.

Rule 4: In UML, a class can exist as a generalisation

for one or more other classes. The generalisation ele-

ment is synonymous with the OWL:subClassOf con-

struct.

Both languages support the subclass and subproperties

relationship. The translation from UML to OWL is

straightforward. If <S, G> is an instance of an UML

association generalisation (S is a subclassifier of G),

then if both S and G are classes and TS, TG are re-

spectively the types of the identifying owner property

of S, G respectively, the OWL equivalent is the addi-

tion of the clause <rdfs:subClassOf

rdf:resource=”TG”/> to the definition of the OWL

class TS. Similarly if S and G are both associations,

the owl equivalent is the addition of the clause

<rdfs:subPropertyOf rdf:resource=”G”/> to the defi-

nition of the OWL object property S.

Rule 5: In OWL, a property when applied to a class

can be constrained by cardinality restrictions on the

domain giving the minimum (minCardinality) and

maximum (maxCardinality) number of instances

which can participate in the relation.

3.6. Migrating Data

Once the ontology is created, the process of data mi-

gration can start. The objective of this task is the crea-

tion of ontological instances (that form a knowledge

base) based on the tuples of the relational database.

The data migration process has to be performed in two

phases based on the following rules: Rule 1: First, the

instances are created. To each instance is assigned a

unique identifier. This translates all attributes, except

for foreign-key attributes, which are not needed in the

metadata. Rule 2: Second, relations between instances

are established using the information contained in the

foreign keys in the database tuples. This is accom-

plished using a mapping function that maps keys to

ontological identifiers.

4. Conclusion and perspectives

We have developed a novel, integrated and semi-

automated approach for extracting personalised ontol-

ogy from data-intensive Web applications that can be

applied to a broad range of today’s business Web sites.

The approach starts with transforming the HTML-

forms into a form model schema. This model, allows

the generation of an XML schema, witch permit the

extraction of domain semantic and the construction of

an UML conceptual model. Finally a mapping process

is done between the conceptual structures and the

OWL ontological constructs, which will be used there-

after for the migration of the database content into an

ontology-based knowledge base. In the future, a com-

bination between domain ontology and HTML-forms

analysis technique can be exploited not only to ex-

tracted ontology but also to migrate from the current

Web to the semantic Web.

- 240 -- 240 -- 239 - - 239 - - 239 -0000000000- 239 - - 239 - - 240 - - 241 - - 241 - - 242 - - 243 - - 244 - - 244 - - 244 - - 244 - - 244 - - 244 - - 244 - - 244 - - 250 - - 250 -

5. References

[1] P. Fraternali, “Tools and approaches for develop-

ing data-intensive web applications: a survey”,

ACM Computing Surveys, Vol.31,227-263, 1999.

[2] L. Stojanovic, N. Stojanovic & R. Volz, “Migrat-

ing Data-intensive Web Sites into the Semantic

Web”, Proc. 17th ACM Symposium on Applied

Computing (SAC), Madrid, Spain, 2002.

[3] -M. Erdmann, A. Maedche, H. Schnurr and S.

Staab. ”From Manual to Semi-automatic Semantic

Annotation: About Ontology-based Text Annota-

tion Tools”, In: Proceedings of the Workshop on

Semantic Annotation and Intelligent Content

(COLING), P. Buitelaar &K. Hasida (eds.) (2000)

[4] R. Volz, S Handschuh, S. Staab, L. Stojanovic, N.

Stojanovic. “Unveiling the hidden bride: deep an-

notation for mapping and migrating legacy data to

the semantic Web”, Journal of Web Semantics:

science, services and agents on the Word Wide

Web 1 (2004) 187-206.

[5] R.H.L. Chiang , T.M. Barron, V.C. Story . “Re-

verse engineering of relational databases: extrac-

tion of an EER model from a relational database”.

Data and Knowledge Engineering, 1994.

[6] M. Vermeer, P. Apers. “Object-oriented views of

relational databases incorporation behaviour”,

Proceedings of the 4th International Conference on

databases systems for Advanced Application

(DASFAA), Singapore, Apr11-13, 1995, pp 26-35

[7] A. Behm, A. Geppert, K. Dittrich. (1997) “On the

Migration of Relational Schemas and Data to Ob-

ject-Oriented Database Systems”. In Proceeding

of the 5th Int. Conference on Re-Technologies for

Information Systems, Klagenfurt, pp. 13-33, 1997.

[8] M. Malki, a. Flory, m.k. Rahmouni “Extraction of

Object-oriented Schemas from Existing Relational

Databases: a Form-driven Approach’,

INFORMATICA, Inter. Journal (Lithuanian

Academy of Sciences) pp 47-72, Vol. 13(1), 2002.

[9] V. Kashyap, “Design and Creation of Ontologies

for Environmental Information Retrieval” , Proc.

12th Workshop on Knowledge Acquisition, Mod-

eling and Management (KAW), Canada, 1999.

[10] I. Astrova, “Reverse Engineering of Relational

Databases to Ontologies” , Proc. 1st European

Semantic Web Symposium (ESWS), Heraklion,

Crete, Greece, LNCS, 3053, 2004, 327–341.

[11] N.Noy & M.Klein, “Ontology evolution: not the

same as schema evolution.” Report Number:

SMI-2002-0926:2002

[12] Y.A Tijerino, D.W. Embly, D.W. Lonsdale, Y.

Ding, G. Nagy “Towards Ontology Generation

from tables”. Kluwer Academic Publishers 2004

[13] I. Astrova, B. Stantic “An HTML Forms driven

Approach to Reverse Engineering of Relational

Databases to Ontologies”, in proceeding of the

23rd IASTED International Conference on Data-

bases and Applications (DBA), eds. M. H. Hamza,

Innsbruck, Austria, 2005, pp. 246- 251

[14] S. Benslimane, M. Malki, D. M.K Rahmouni,

“From data-intensive Web sites to ontology-based

semantic web: A reverse engeineering approach”,

to appear in IASTED International Conference on

Artificial Intelligence and Soft Computing (ASC

2005), September 12-14, 2005, Benidorm, Spain.

[15] M. Malki, M. Ayache, M.K. Rahmouni. “Rétro-

ingénierie des Bases de Données Relationnelles:

Approche Basée sur l’Analyse de Formulaires ».

INFORSID’99. Toulon, France 1999.

[16] N. Mfourga. “Extracting entity-relationship sche-

mas from relational databases: a form-driven ap-

proach.” In Proc. of Working Conf. on Reverse

EngineeringWCRE’97 1997.

[17] D. Embley, “Toward Semantic Understanding –

An Approach Based on Information Extraction”,

Proc. 15th Australasian Database Conference

(ADC), Dunedin, New Zealand, 2004.

[18] Y. Yang & H. Zhang, “ HTML Page Analysis

Based on Visual Cues”, Proc. 6th International

Conference on Document Analysis & Recognition

(ICDAR), Seattle, WA, USA, 2001, 859–864.

[19] J. Wang & F. Lochovsky, “Data Extraction and

Label Assignment for Web Databases”, Proc. 12th

International Conference on World Wide Web

(WWW), Budapest, Hungary, 2003, 187–196.

[20] M. Anderson. “Extracting a E.R. schema from a

relational database through reverse engineering”.

In Proc. of the 13th Inter. Conf. on the ERA’94,

pp. 403–419, 1994.

[21] H. Mannila et al. The Design of Relational Data-

bases. Addison-Wesley publishing, 1994.

[22] J.M. Petit, F. Toumani, J. Kouloumdjian.

« Relational database reverse engineering: a

method based on Query analysis”. Inter. Jour of

Cooperative Information System,4(2,3), 287–316,

1995.

[23] C. Batini, M. Lenzerini, S.B. Navathe (1986). “A

comparative analysis of methodologies for data-

base schema integration”. ACM Computing Sur-

veys, 18.

- 241 -- 241 -- 240 - - 240 - - 240 -0000000000- 240 - - 240 - - 241 - - 242 - - 242 - - 243 - - 244 - - 245 - - 245 - - 245 - - 245 - - 245 - - 245 - - 245 - - 245 - - 251 - - 251 -

