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Abstract 

 
 

Since last decade, many methods with appropriate 
measures are proposed in knowledge discovery in 
databases. These measures aim at both improving the 
quality of mined association rules and reducing the 
problem of many nested rules. This paper presents a 
new statistical Implication Oriented Normalized 
measure, denoted ION. ION turns to be a unifying 
framework for several probabilistic measures of 
interestingness of association rules mined from diverse 
kind of dataset. It naturally leads to a pertinent 
algorithm for mining statistical implication, according 
to logical reasoning: one has the identity 
ION(¬b→¬a) ≡  ION(a → b), for any itemsets a and 
b. In addition, it takes into account both of positively or 
negatively oriented dependencies and of a deviation 
from equilibrium on large databases. 
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1.  Motivation  

 
The mining association rules problem was introduced 
by [2] before intensively studied [3], [8]. More 
theoretical works are also done [13]. Association rule 
mining is a data mining task that consists with 
discovering relationships among items or itemsets 
given a set of transactions. Briefly, AR mining problem 
is composed of two stages: 

(1) Finding frequent itemsets, commonly 
respecting a given support threshold; 

(2) Generating AR from these frequent itemsets, 
commonly with a given confidence threshold. 

Motivated by usefulness of AR in many 
application fields such as diagnosis decision support, 
recommender systems, intrusion detection, etc., many 
algorithms concerned with improving performance in 
the treatment speedy are proposed in the literature 
(Apriori, AprioriTID and AprioriHybrid proposed by 

[3], CHARM, CLOSET, CLOSET+, etc.). However 
one obtains a huge amount of extracted AR affected of 
some drawbacks, for example, because of without 
taking into account of reference situations: 
independency, logical reasoning, deviation from 
equilibrium [7], etc. So, paradoxically, data mining 
itself provides a new knowledge management problem. 
In the other hand, not all rules with high support and 
confidence are interesting. In this paper, we consider 
the problem of finding objectively the most interesting 
rules from the set of all candidate association rules 
holding in a data. Often the most interesting ARs are 
those revealing unexpected information, or an 
additional predictive power. In this text, the traditional 
association rules (AR) of the type “a implies b” or “if a 
is true, then b will likely also true”, denoted “a → b”, 
and called a positive association rule, are extended to 
those negative association of the three forms [4], “a → 
¬b”, “¬a →b”, and “¬a → ¬b” that are respectively 
called a right hand negative AR, left hand negative 
association rule and counter-opposite AR. In market-
basket analysis, negative AR may help in task of 
identifying products that conflict each other or products 
that complement each other.  In addition, for example 
about the two typical types of trading behaviours, as 
insider trading and market manipulation, that impair 
fair and efficient trading in securities stock markets, the 
market surveillance have to ensure a fair and trading 
environment for all participants through an alert 
system. Negative AR may assist in determining which 
alerts can be ignored. Suppose that each piece of 
evidence a, b, c, and d, can cause an alert of unfair 
trading e. Having the two rules “a →¬e” and “c →¬e”, 
the team can make the decision of trading when a or c 
occurs: alert caused by a or c can be ignored. So the 
development of negative AR mining will allow 
companies to hunt more business chances. Notice that 
considering infrequent itemsets are there more useful 
than only taking account into frequent itemsets. Two 
key problems exist in negative AR mining [4]: (i) how 
to effectively identify interesting itemsets? (ii) How to 
effectively identify negative AR of interest? All 
traditional algorithms recalled above are only interested 
to positive ARs mining.  
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2. The probabilistic model. Related concepts 
and definitions 
 
In this text, we consider a finite discrete probabilised 
space (Ω, S(Ω), P), such that cardinality of Ω equals n, 
denoted n =|Ω|, where S(Ω) denotes the set of all 
subsets of  Ω, and P the intuitive probability such that 
for all event E in Ω, P(E) = |E| /n. Let Γ  be the set of m 
boolean variables (also called attributs): Γ = {v1, v2, …, 
vm}; each boolean variable vi is considered as a 
Bernoulli random variable defined on the sample space 
Ω such that P(vi = 1)=P(vi

-1(1)) = 1/| vi
-1(1)|. Each non 

empty subset of Γ is called an itemset. For 
convenience, an itemset equally denotes a subset and 
an attribut or a variable. For typographic simplicity, for 
two itemsets u and v in S(Γ), we shall write: U=u-1(1) 
the dual of u, V = v-1(1), nu = |U|, nv=|V|, nuv= |U∩V|, 
¬u = logical negation of u, U = Ω - U, supp(u) = P(U) 
called the support of u (see next table 4). Notice that 
the couple (Ω, Γ) symbolises the matrix of Boolean 
data D with n lines and m columns. The notion of AR 
is defined as it was introduced for the first time by [2].  
 Definition 1 (support-confidence framework): An AR 
mined from the Boolean database D is a couple (u, v) 
of itemsets, denoted u →v, such  that U∩V=∅, 
(Supp(u), Supp(v), Supp(u∪v))≥ms and P(V/U) ≥mc, 
where ms and mc are two reels fixed in ]0, 1[; we 
respectively call u, v, Supp(u∪v), the conditional 
probability P(V/U)=Supp(u∪v)/Supp(u), nuv and nu¬v, 
as the antecedent, the consequent, the support or cover, 
the confidence (conf), the number of examples and the 
number of counter-examples of the AR u →v.  
An itemset whose support is greatest than the fixed 
threshold is called a frequent (also called large) 
itemset. How interpreting an AR? For example, in the 
market topic, suppose u and v are two frequent 
itemsets: when supp(u→v)=s and conf(u→v) = c, one 
concludes that 100c% of transactions containing u also 
contain v, when 100s% of transactions contain u and v.  
Definition 2: A probabilistic quality measure is a real 
function µ defined on Part(Γ2) such that,  for each AR 
u →v, the real value µ( u →v) depends exclusively on 
the four parameters n, Supp(u), Supp(v) and 
Supp(u∪v).  
Notice that the set equations U = U∩ V+ U∩V and V 
= U∩V+ U∩V justify this sufficiency of four 
mentioned parameters in definition 2. In this work, we 
are interesting of finding additional probabilistic 
measures to avoid the above mentioned drawbacks 
provided by the exclusive sufficiency in Support-
Confidence framework as criteria for mining AR. We 
shall try taking into account into coherence of 
dependency and surprise semantics.  
 
3. Required principles for implicative measure 
 
Inspired by the formal logical implication, where two 
propositions of the forms (u →v) and (¬v → ¬u) are 

equivalent, that is to say they have equal logical values, 
we pose definitions as below.  
Definition 3: An AR quality measure µ  is said a 
measure of implication (also called implicative 
measure), if for all AR u →v, it verifies:  

µ (¬v → ¬u) = µ (u →v).                       
Definition 4:  An AR quality measure µ  is symmetric, if 
for each AR u →v, one has: µ (u →v) = µ (v →u), and 
perfectly symmetric, if µ (¬u → ¬v) = µ (u →v).  
An AR whose one of measures is implicative will be 
qualified an implicative association rule.  
For example, the measure Support is symmetric, but 
not implicative. Confidence is a non symmetric and 
non implicative probabilistic measure. The basic 
principles (Pi) required for our approach are the first 
five criteria contained in following (P1), (P2) and (P3).     
(P1) The three Piatetsky-Shapiro's principles [11]:  
An interestingness measure of an AR (u →v) must be 
null in case of independency of antecedent and 
consequent, strictly increasing function of the number 
of examples when the three other parameters are fixed, 
and strictly decreasing function of the cardinality of 
antecedent dual or strictly decreasing function of the 
cardinality of consequent dual, when the three other 
parameters are fixed.  
(P2) A fourth Major & Mangano's principle [10]: 
An interestingness measure of an AR (u →v) must be 
strictly increasing function of its cover, when the 
confidence is maintained constant greatest than fixed 
threshold. 
(P3) The fith Freitas'principle [9]:  
A quality measure of an AR must be a non symmetric 
function.  
Recent works show the necessity to verifying   
additional criteria for an AR quality measure, as 
recalled below:  
(P4) An AR quality measure must be strictly decreasing 
function and preferably concave depending on the 
number of counter-examples.  
(P5) For all logical rule, that is to say a rule without 
counter example, an AR quality measure must be 
constant.  
(P6) An AR quality measure must be easy for making 
threshold significant.  
(P7)  An AR quality measure must be intelligible, 
providing rules with easy interpretation. 
(P8) Sensitivity to n: the quality measure should vary 
when data dilates.  
(P9) Due to [4]: A quality measure should make 
reference to deviation of uncertainty (also called 
deviation of equilibrium), that is to say in case of 
equality between number of examples and number of 
counter examples, the quality measure must be 
constant.  
 
4. Statistical Implication Oriented Normalized 
(ION) quality measure of association rules 
 
Let be u →v an AR. U= u-1(1), V= v-1(1) and U∩V are   
the corresponding events to respectively itemsets u, v 
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and u∪v.  About the concept of conditional probability, 
one has the following intuitive states:  
I1. u and v are statistically independent, if  
P(V/U)=P(V). 
I2. u and v are positively (resp. negatively) dependent 
(also called in attraction situation (resp. in repulsion 
situation)), if P(V/U)>P(U) (resp. P(V/U)<P(V)): 
 in this case, one has 0< P(V/U) – P(V) ≤ 1 – P(V) 
(resp. – P(V) ≤ P(V/U)– P(V) < 0). Commonly, the 
inequality P(V/U)>P(V) (resp. P(V/U)<P(V)) is 
interpreted as v favouring u (resp. u disfavouring v). 
Notice that P(V/U)<P(V) is equivalent to  
1 - P(V/U) > 1 - P(V), say P( V/U) > P( V). In the other 
terms, (u disfavours v) is equivalent to (u favours ¬v), 
say considering the right hand negative rule (u → ¬v).  
I3. u and v are incompatible, if P(V/U) = 0.  
I4. The logical implication of u on v corresponds to the 
inclusion U⊂ V and to P(V/U) = 1.  
By virtue of the continuity of P(V/U) as a function of t 
= |U∩V|, the logical implication state is the above-limit 
of positive dependency (i.e. the mutual attraction) 
between u and v. So by duality, for taking account into 
negative dependency, in case of one of the two itemsets 
disfavours the other, then one obtains a negative rule, 
and for coherence, a quality measure of the initial 
positive rule should be a negative value, equal to - 1 of 
course in case of incompatibility. This heuristic 
provides the definition below.  
Definition 5: A probabilistic quality measure µ is 
called normalized and centered, if µ verifies the three 
Piatetsky-Shapiro (P1) principles, is non symmetric, 
and such that for any AR (u →v) from a given context, 
one has: µ (u →v)> 0, if u favours v; µ (u →v)< 0, if u 
de favours v; µ (u →v)= + 1, in case of logical 
implication; µ (u →v)= - 1, in case of incompatibility. 
Since nu¬v = n - nuv, one has the  
Proposition 1: All normalized quality measure of AR is 
a strictly decreasing function of the number of counter 
examples.  
The probabilistic normalized and centered measure µn, 
deduced from probabilistic quality measure µ, is called 
the normalized quality measure of µ. For example, it is 
easy to verify that Conviction is an implicative 
measure not normalized, because of taking infinite 
value in case of logical implication.  
Theorem and definition 6:  
The probabilistic quality measure defined as a 
conditional probability increment ratio such that for 
any AR (u →v), one has:  

ION(u →v)= 
P(V/U) − P(V)

1− P(V)
, if u favours v;

P(V/U) − P(V)
P(V)

,  else,

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

with {u, v} ≠ {∅, Γ}, is a normalized, centered, non 
symmetric and implicative quality measure (Cf. §6, 
§7). One calls it simply the statistical Implication 
Oriented Normalized (ION) quality measure.  

Proof. Let us remark the equivalence between the two 
propositions " u disfavours v" and "u favours ¬v". So it 
is sufficient to proof the first half of the definition 6. 
Let be an AR (u →v) such that u favours v.   One has: 
 ION(¬v → ¬u) = [P( U/ V) – P( U)]/(1- P( U)] 
              = [1-P(U/ V)-1+P(U)]/P(U) 
  = [P(U)-P(U∩ V)/(1-P(V))]/P(U) 
 = [-P(U)P(V)+P(U∩V)]/[P(U)(1-P(V)] 
 = [P(V/U)-P(V)]/(1-P(V)] = ION(u →v). 
Then ION is effectively an implication quality 
measure. In the event of a logical implication u →v, it 
is easy to obtain that ION(u →v)=1. In case of 
independency, ION(u →v)=0. In case of 
incompatibility, ION(u →v)= - 1. ION is non 
symmetric, because equality ION(v →u)= ION(u →v) 
holds, if and only if P(V/U)=P(V/U) and P(U)=P(V).  
Important remark. It is interesting to notice that the 
explicit expression  ION(u →v) = (n.nuv – nunv)/(nu(n-
nv)) shows both the increasing function of number of 
examples, decreasing function of number of counter 
examples, concave decreasing function of  nv, 
respectively in maintaining the three other parameters 
constant. The implicative property of ION allows that 
if  an AR u →v is valid, then also  (¬v → ¬u). That is 
comparable of logical reasoning. Last, from above 
statement I2 one has: - 1 ≤ ION(u →v)  ≤ 1, and :  
In case of positive (resp. negative) dependency, the 
bigger the ION(u →v) (resp. - ION(u →v)) value, the 
higher the positive (resp. negative) dependence which 
tend to logical rule (resp. incompatibility). 
It is easy to observe that the traditional probabilistic 
quality measure Confidence is not implicative. So for 
aiming at mining AR with degree of logical implication 
background, it is necessary to combine it with ION. 
Notice that ION has no probability background. 
Confidence and ION play complementary roles in 
mining AR task. Is this combination optimal? That is 
an open problem. Next we'll see relation between ION 
and some probabilistic quality measures of AR through 
normalization action.  
 
5. Probabilistic measure  normalization process 
 
Let be µ a probabilistic quality measure of AR, µn its 
normalized. Let be u →v an AR. Let us denote: 
• xf and yf: the coefficients corresponding to case "u 

favours v", depending on probabilities P(U) and 
P(V);  

• xd and yd: the coefficients corresponding to case "u 
disfavours v",  depending on P(U) and P(V).  

Taking into account the continuity of the evolution in 
the two zones of attraction and repulsion (Figure 1), 
one should obtain:  

µn(u →v) =  
x f .µ (u → v) + y f ,  if u favours v;

xd .µ(u → v) + yd ,  if u disfavours v;
⎧ 
⎨ 
⎩ 

(S0) 

Under the terms of continuity, these four coefficients 
are determined by passages at the limiting points.  
From where: 
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(i)Logical implication and independence give:  
x f .µ(u → v) imp + y f = +1
xd .µ (u → v) ind + yd = 0

⎧ 
⎨ 
⎩ 

                  (S1) 

 (ii) Independence and incompatibility imply:  
xd .µ (u → v)d + yd = 0

xd .µ(u → v) ind + yd = - 1
⎧ 
⎨ 
⎩ 

                   (S2) 

These two linear systems give:  

xf =
1

µ(u → v)imp − µ (u → v)ind

yf = −
µ (u → v)ind

µ(u → v)imp − µ (u → v)ind

⎧ 

⎨ 

⎪ 
⎪ 

⎩ 

⎪ 
⎪ 

     (s3) 

and  

xd =
1

µ(u → v) ind − µ (u → v) inc

yd = −
µ (u → v) ind

µ(u → v) inc − µ (u → v) ind

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

       (S4) 

This shows possibility of normalization-centering of a 
probabilistic quality measure of the rules. Reciprocally, 
from relation (S0) results the expression of initial 
measure µ according to its normalized centered µn:  

µ(u →v)=

µn (u → v) − y f

x f
,  if u favours v;

µn (u → v) − yd

xd
,  if u disfavours v.

⎧ 

⎨ 
⎪ ⎪ 

⎩ 
⎪ 
⎪ 

 (s5) 

By definition, its normalized centered evolves/moves 
according to the shéma (Figure 1) below.  

                  - 1                    0                    +1             IR 

 
        Incompatibility        Independency        Logical implication                   

                           Zone of repulsion      Zone of attraction 

Figure 1 :Quality measure normalization process 

Examples:  

a) Lovinger's measure: Lov(u→v)=(P(V/U)-P(V))/(1-
P(V)). Let be an association rule u →v. One has: if u 
favours v, then Lov(u→v)>0; in case of logical 
implication, one obtains Lov(u→v)=+1; in case of 
independence, Lov(u →v)=0; if u disfavours v, then 
Lov(u →v)<0; For the limit case of incompatibility, let 
us seek  a function a checking 
Lovn(u→v)=a.Lov(u→v) = - 1:  
- a P(V)/(1-P(V)) = - 1 implies a = (1-P(V))/P(V).  
From there, results  

Lovn(u→v)= 

P(V/U) − P(V)
1− P(V)

, if u favours v;

P(V/U) − P(V)
P(V)

,  else,

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

Thus, Lovn=ION. Conversely,  

Lov(u→v) = 
ION(u → v),  if u favours v;

P(V)
1- P(V)

ION(u → v),  else,

⎧ 
⎨ 
⎪ 

⎩ ⎪ 
 

b) By a similar reasoning, one obtains an invertible 
functional relation between ION and each following 
quality measures:  confidence, conviction, Pearson’s 
Phi-correlation coefficient, Piatetsky-Shapiro's 
measure, Surprise; and their normalized measures are 
equal to ION.  This last proposition does not always 
hold for any probabilistic quality measure. The 
normalizability condition is precised below. 
Proposition : A probabilistic quality measure µ is 
normalizable, if and only if  µ doesn’t become infinite 
at one among the three references situations, that are 
incompatibility, independence or logical implication 
situations. 
However, if possible, these invertible relations with 
ION would provide an opportunity to compare many 
probabilistic quality measures via ION. From where 
results unifying property of ION for such AR quality 
measures. 
 
6. ION sensitivity of references situations:  
independency, deviation from equilibrium and 
surprise. Significativity 

 
Recall the objective interestingness measures may be 
divided into two groups: The measures taking account 
into deviation from independence, which have a fixed 
value when the two itemsets are independent, and those 
taking account into deviation from equilibrium (i.e. 
maximum uncertainty of the consequent given 
antecedent), which have a fixed value when number of 
examples and number of counter examples are equal. 
 
Independency. For any possible AR u→v, one knows 
that the quantity P(V/U)-P(V))/P(V) = (P(V∩U)-
P(U)P(V))/P(U)P(V), denoted δi(u,v), measures the 
deviation of independency ratio of the two itemets u 
and v, in case of u favours v. However in this case, 
ION(u→v)= δi(u,v). P(V)/(1-P(V)). Thus ION(u→v)> 
δi(u,v), if and only if P(V)/(1-P(V))>1, that is to say 
P(V)>1/2. Interpretation: ION is an indicator of 
reduction of the uncertainty of v knowing the 
realization of u, in case of P(V)>1/2.  
 
Deviation from Equilibrium.  Assume an AR u→v 
such that u favours v in equilibrium situation. Then 
ION(u→v)equilibrium = 1/2 - nv/(2(n - nv) = 1/2 - o(1/n) 
which tends to 1/2 when n becomes sufficiently big. 
Interpretation: ION takes account into equilibrium 
deviation in large databases.  
Notice that Conf(u→v)equilibrium = P(V/U) = 1/2  which 
corresponds to effectively a maximum uncertainty. 
Inequation ION(u→v)> ION(u→v)equilibrium  if and only 
if Conf(u→v)> Conf(u→v)equilibrium =1/2. 
 
Surprise. Recall surprise [5]brought by an AR u→v is 
the quantity defined by 
Surp(u→v)=(P(UV) – P(U∩ V))/P(V). 
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Thus Surp(u→v)equilibrium= 0; and Surp(u→v)= 0 if and 
only if P(V/U) =1/2: No surprising rule corresponds to 
maximum uncertainty of consequent given antecedent.  
Interpretation: Again, one would thus rather be brought 
to preserve only the rules whose confidence exceeds 
1/2. The presence of P(V) to the denominator makes 
granting more credit to the rules whose support of 
consequent is relatively weak. 
One verifies that: Surpn = ION, Sup((u→v)=  

P(V)ION(u → v)

2P(U)(1 − P(V)
+ 1 −

1

2(1 − P(V))
,  if u favours v,

ION(u → v)

2P(U)
+

1 − 2P(V)

2P(V)
,  else

⎧ 

⎨ 
⎪ 

⎩ 
⎪ 

 

and if ION(u→v)>0 and P(V)<1/2, then Surp(u→v)>0. 
Thus ION takes into account of surprise background. 
 
Significativity. Remark that contingency table is 
implicitly referenced in defining ION. It is easy to 
show that ION, famous Khi-square and Pearson's Φ2 
statistics are linked by: 

ION(u→v) = 
n.nuv − nunv

nu(n − nv )
=

nv
nu

n − nu
n − nv

Φ( u→v) 

                   = ±
1

n

nv
nu

n − nu
n − nv

χ 2  

Interpretation: Therefore, the thresholds of 
significativity of ION can be obtained easily starting 
from those of Khi-square. ION satisfies principle (P6). 
Notice that ION checks all above evoked principles P7,  
P8 and P9. 
Negative rules versus positive rules. For any possible 
AR u→v, one has :  
ION(u→¬v) = - ION(u→v), and for any α∈]0, 1[, 
α<ION(u→v)<1 ⇔ - 1<ION(u→¬v)< - α.  
Examples justifying complementarity of different 
criteria, and why ION is pertinent. 

(i) Resumption of contingency table in S. Brin & al [8]:  
Table1 v ¬v  
u 20 5 25 
¬u 70 5 75 
  90 10 100 

Conf(u→v)=80%>conf(u→v)=22%, 
Conf(¬u→v)=93%>conf(v →¬u )=78% 
 ION(u→v) < 0 : (u→v) is not valid.  
ION(u→¬v)=1/9 = 0, 11 : u→¬v is out of interest 
ION(¬u→v)=1/3 = 0, 33 : ¬u→v  is of interest 
(ii) Case of  large databases: 

Table 2 v ¬v  
u 5 000 000 500 000 5500 000 

¬u 4 000 000 500 000 4 500000 
 9000 000 1000 000 10000000 

Conf(u→v)=90,90%,  Supp(u→v)=90%, 
Surp(u→v)=0,50, but ION(u→v) = 0, 09 is weak: 
(u→v) is not of interest.  
 

Table 3 v ¬v  

u 5 000 000 500 000 5500 000 
¬u 4 000 000 500 000 4 500000 
 9000 000 1000 000 10000000 

Conf(u→v)=59%, ION(u→v) =0,69%,and Φ( 
u→v)=67,7%, but  Supp(u→v)=06, 8%  is very 
weak: (u→v) is not valid.  
Now let us analyze the binary context defined 
below in Table 4: consider u={a, c} and v={b, e}.  
 

Table 4 a b c d e 
e1 1 0 1 1 0 
e2 0 1 1 0 1 
e3 1 1 1 0 1 
e4 0 1 0 0 1 
e5 1 1 1 0 1 

U={e1, e3, e5}, V={e2, e3, e4, e5}, 
Conf(u→v)=0.67,Supp(u→v)=0.4,  
P(V/U)=0.7<P(V)=0.8: The rule u→v would be 
valid according the support-confidence pair, but 
not according the to ION, because it is shown that 
in fact u disfavours v. So it is advisable to consider 
the negative candidate AR ( u→¬v).   
These four typical examples above illustrate some 
weakness in the exclusive support-confidence 
framework and the need for considering ION. 
 

7. Related work 
 
 To our knowledge, few work are interested in 
the negative rules in addition to those positive. 
 First, we discuss the approach proposed by 
Wu et al.[12]. These authors define a new concept of 
confidence which is equal to the conditional probability 
increasing ratio, i.e. which, as by chance, coincides 
with our current measure suggested ION: it is called 
Confidence conditional probability increment ratio 
function, denoted Confidence CPIR. But ION does not 
contain no probabilistic background. In addition their 
algorithm automatically output negative AR of the type 
(¬u→¬v) without consideration of its logical 
equivalent u→v, but it is actually shown that ION or 
CPIR is implicative. In this approach, incompatibility 
is confused wrongly with the negative dependence. 
 Second, by strongly criticizing the approach of 
[12], work of Antonie and Zaïne[4] proposes an 
approach which combines the traditional model 
support-confidence with the coefficient of correlation 
in order to primarily extract stronger positive and 
confined negative AR, but coefficient correlation, 
which is intrinsically symmetric, is not implicative. 
 
8. Mining implicative AR algorithm 
 
The properties of ION studied above allow us to lead to 
the following definition of AR.  
Definition 7: Let Γ = {v1, v2, …, vm} be the set of items 
in database D, S(Γ) be the set of all subsets of  Γ, 
w=u∪v be an itemset such that u∩v =∅, supp(u)× 
supp(v)≠ 0, and ms is a fixed real in ]0, 1[ and α∈]85, 
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1[ given threshold by the user. Then, respecting above 
adopted notations:  
(1) If supp(w)≥ms, supp(u)≥ms, supp(v)≥ms, 
conf(u→v)>min(1/2, conf(v→u)) and  ION(u→v) α-
significant  then (u→v) is a positive rule of interest. 
(2) If supp(u∪¬v)≥ms, supp(u)≥ms, supp(v) ≥ms, 
conf(u→¬v)>min(1/2, conf(¬v→u)) and  ION(u→¬v) 
α-significant  then (u→¬v) is a right hand negative AR 
of interest. 
(3) If supp(u∪¬v)≥ms, supp(u)≥ms, supp(v) ≥ms, 
conf(¬v→u)>min(1/2, conf(u→¬v)) and  ION(¬v→u) 
α-significant  then ((¬v→u) is a left hand negative AR 
of interest. 
Thus follows the suggested algorithm of mining 
implicative AR.  
Stage 1: Extract frequent itemsets according welknown 
Apriori algorithm or its reviewed version; and for all 
disjoined frequent itemset u and v, by posing w=u+v, 
the second key sequence is described as follows. 
Stage 2:  
Case of w frequent itemset, then  
     if  conf(u→v)>conf(v→u), then   
         E1: if supp(V)<1/2 then  
                     if ION(u→v) significant, then  
    if  conf(u→v)>1/2, then output the AR u→v, 
    else no AR, 
                      else no AR, 
                 else no AR, 
      else if conf(u→v)< conf(v→u), then  
                                      exchange u and v and go to E1, 
               else if conf(u→v)=conf(u→v)>1/2, then 
                      if ION(u→v) and ION(v→u) both  
significant, then output equivalence u↔v,  
                           else no rule,  
  Case of w infrequent, then   
                E2: if (u∪¬v) frequent, then  
 if ION(u→¬v) significant and                  
Conf(u→¬v)>1/2, then output AR u→¬v , 
else if (¬u∪v) frequent, then  
        if ION(¬u→v) significant and                  
Conf(¬u→v)>1/2, then output AR ¬u→v.  
 
9. Concluding remarks 
 
 This study shows the existence of a 
probabilistic quality measure of ARs, denoted ION, 
which turns to play a central role compared to the usual 
probabilistic indices to assess the quality of association 
rules with interpretable dependence directed in 
statistical term of implication. This quality measure has 
a role comparable with that of the normal law centered 
and reduced within the Gaussian laws in the fields of 
the random variables. ION would be advantageously 
used by expert user who tolerates counter examples; 
and it would like belonging to the criteria in the case of 
approaches hybrid in the mining association rules task. 
ION can be helpfully used for pruning pertinently an 
AR basis.  
 

10. References 
 
[1] R.Agrawal, Heikki Mannila, Ramakrishman 
Srikant, Hannu Toivonen and A. Inkeri Verkamo 
(1996). Fast Discovery of association rules. In 
Advances in knowledge discovery and Data Mining, 
Usama M. Fayyad, Gregory Piatetsky-Shapiro, Padraic 
Smyth, and Ramasamy Ulthurusamy Editors, AAAI 
Press / The MIT Press, California, pp. 308-328.  
[2] R. Agrawal, T. Imielinski & A. Swami (1993). 
Mining association rules betwen sets of items in large 
databases. In P. Buneman and S. Jajodia, editors, Proc. 
Of ACM SIGMOD International Conference on 
Management of Data, volume 22, pp. 207-216, 
Wachington, 1993. ACM press. 
[3] R. Agrawal and R. srikant (1994). Fast algorithm 
for mining association rules. In Proc. Of the 20th 
VLDB Conférence, 487-499. 
[4]Antonie M.-L., Zaïane O.-R.(2004): Mining positive 
and negative Association Rules: an approach for 
confined rules. Technical Report TR04-07, Dept of 
Computing sciences, University of Alberta. 
http://ftp.cs.ualberta.ca/pub/TechReports/2004/TR04-
07/TR04-07.ps. Avalable online 
 [5]Azé Jérome (2003). Une nouvelle mesure de qualité 
pour l’extraction de pépites de connaissances, 
Extrcation des connaissances et apprentissage. RSTI 
série RIA-ECA. Volume 17- n°1-2-3-/2003, Extraction 
et gestion des connaissances EGC 2003, pp.171-182. 
[6]J. Blanchard, F. Guillet, H. Briand, and R. Gras, 
Assessing rule interestingness with a probabilistic 
measure of deviation from equilibrium, in Proc. 
ASMADA, ENST Bretagne, France, Mai 05, 191-200.  

[7]Brin S., Motwani R. & Ulman J.D., & Tsur 
S.(1997). Dynamic itemset counting and implications 
rules for market basket data. Proc. Of the 1997 ACM 
SIGMOD  conf, mai 1997b, 255-264. 
[9]Freitas A.A. On rule of interestingness measure. 
Knowledge –Based-Systems n°12, 1999, 309-315. [ 

[10]J.A. Major and J.J. Mangano (1993), Selecting 
among rules induced from a heuricane database. In 
KDD’93, Workshop papers, pages 28-41, Menlo Park, 
Califoria.  
[11]Piatetsky-shapiro G. Knowledge discovery in Real 
Data Bases. A report on the IJCAI-89 W.shop, AI 
Magazine, 11(5), 91, 68-70. 
[12]Wu, X., Zhang C., Zhang S.(2004): Mining both 
positive and  negative association rules. In ACM 
Transaction on Information Systems, Vol. 22, No 3, 
July 2004, p. 381-405.  
[13] M.J. Zaki & M.Ohighara (1998). Theoritical 
foundations of association rules. In 3rd SIGMOD’98 
workshop on Research Issues In data Mining and 
Knowledge Discovery (DMKD), pp. 1-8, 1998. 
 
 

                                

                               - 201 -                               - 201 -                               - 201 -                                                              - 207 -                               - 207 -




