
Contribution to graphical querying language for XML semi-structured

data
Sameh Ammar, Ikram Amous, Faiez Gargouri

LARIM, Route Mharza km 1,5, CP 3018, Sfax, Tunisie
ammar_sameh@yahoo.fr, ikram.amous@isecs.rnu.tn, faiez.gargouri@fsegs.rnu.tn

Abstract

Recently, XML has become a standard for data

representation, manipulation and exchange on the

web. The increase in the use of XML in many

applicative domains induces a strong need for

providing XML query capabilities to many users. In

this paper, we propose a solution of XML graphical

querying based on the XQuery language. In our

approach, we propose to integrate textual, spatial and

temporal meta-data in order to improve information

retrieve and present document suitable to the user’s

needs. We, also, propose the extension of the XQuery

by new operators in XQuery grammar to facilitate the

use of the meta-documents.

1. Introduction

Recently, XML has become a standard language

for data representation, manipulation and exchange on

the web. The increase in the use of XML in many

applicative domains induces a strong need for

providing XML query capabilities to many users

including those who lack in computer programming

skills. For these reasons, many languages have been

developed to formulate XML queries and express

document transformations. XQL [11], XML-QL[12],

Lorel [4] and XQuery[5] were designed for XML

document retrieval and textual querying. However,

these languages are still difficult for common users to

use; and an intuitive graphical query languages or

interfaces may help people querying data sources.

In this paper, we present a graphical language to

represent user queries. We tend to make the graphical

language clear and provide a user-friendly query

environment. Our object is to help user to query

multimedia data with their spatial and temporal

relationships. We present, also, an extension to the

XQuery by integrating a set of new operators in the

XQuery grammar.

The present paper is organized as follows. In section

two, we will briefly talk about the different

query languages designed for semi-structured data.

Section three develops our proposal for a graphical

querying XML documents by means of examples. In

section four, we introduce new operators in XQuery

grammar helping the user to make easily graphical

queries and we give some examples of using these

operators. Finally, section five concludes this paper

and briefly points out some future works.

2. Related works

The diffusion of XML in most applicative fields

sets a pressing need for providing the capability to

query XML data to a wide spectrum of users,

including those with minimal or no programming

skills. So, several XML query languages were

proposed and extensively analyzed in the literature

[1,3] before the proposal of XQuery as standard. We

can distinguish two types of query languages: textual

and graphical ones. XML-QL, XQL and Lorel are

query language designed in order to facilitate retrieve

for semi-structured data. XQuery [5] combines

features from several earlier XML query languages, in

particular XPath [13], XML-QL, SQL…It is designed

with the goal of being expressive, exploiting the full

adaptability of XML and combining information from

diverse data sources [5]. All these languages were

designed to be easily understood by humans, but, the

number of their experts still limited.

With this motivation in mind, many languages

were developed to offer a visual interface to query

XML documents, such as XQBE [6], XML-GL [14],

and GLASS [10]. Those languages were built on the

base of graphical representation of XML documents

and DTD. XQBE can be considered as a successor to

XML-GL, with several new features.

Due to the specificity of XQuery, new constructs

have been introduced and some XML-GL constructs

have been revised to develop GLASS.

Multimedia documents are annotated and described

by a collection of meta-document enriched with

spatio-temporal links. Figure 1 [8] gives the meta-

model’s meta-document.

Figure 1: Meta-model's meta-document

F i c h i e r

0 . . *

U n i t é

I d u

N o m _ u
T y p _ u

N o m _ f
T y p _ f

0 . . *

0 . . *

A t t r i b u t

N o m _ a
T y p _ a

0 . . *

2-9525435-0 © IEEE SITIS 2005 - 122 - - 122 -

A meta-document is composed by different media

units. Each unit can be text, video, audio or picture.

Basing on this representation, we claim that

querying this type of documents using a traditional

language, as XQuery, make complex queries.

Thus, all these query languages, previously quoted,

can’t support textual and spatio-temporal meta-data

such as those proposed in [9].

Our proposal here is to design a graphical query

language integrating textual and spatio-temporal meta-

data based on the XQuery in order to improve

information retrieval. We try to make the graphical

language clear and concise in expression and provide a

user-friendly query environment. In our approach, we

are based on XQuery language because it offers better

performances than older languages and supports our

requirements.

Multimedia applications impose some specific

characteristics with respect to the temporal and spatial

composition of objects in the context of the

application. Many researches have proposed a set of

operators for representing temporal and spatial

composition such as the disjunction (sd), the adjacency

(sa), before, after, equals, meets... We, also, suggest

the extension of the XQuery by means of new

operators to facilitate the use of meta-documents.

3. Towards a graphical query

language

Our graphical query language is designed for users

to extract information from semi -structured data. We

target both the unskilled users and the expert ones

wishing to speed up the construction of their queries.

For these reasons, our language must be able to

express various queries clearly and concisely without

ambiguity, and be simple to draw and easy to read.

In our proposal, we considered the multimedia

document as semi-structured. These documents are

composed in time and space by different media, i.e.

video, sound, picture or text. [9] proposes the

annotation of multimedia document based on temporal

and spatial relationships. Our proposal consists in a set

of spatio-temporal operators to extend the XQuery.

In the following, we introduce the general ideas

including the basic concepts and operators in our

proposal. After that, we show how to express queries.

In addition, we describe our proposal for XQuery

extension defining the syntax of new spatial and

temporal operators.

3.1. Main contributions

The visual representation of XML documents relies

on simplified XML data model, basically reduced on

the notion of Elements, Attributes and PCDATA

content with containment hierarchies connecting such

elements. In order to develop a user friendly interface

easy to understand and manipulate, we propose a set of

concepts and operators.

The following sub-sections present these concepts

and operators.

 3.1.1. Concepts:

As shown in figure 3, a concept can be:

� Elements nodes (items) are shaped as rectangles

labeled with the element’s name (or tag name).

� Attributes nodes are represented as filled black

circles. The label on the incoming arc represents

the attribute name.

� PCDATA nodes are depicted as empty circles and

denote the textual content of XML elements.

� Trapezoidal nodes represent newly generated

elements (tags) to be included in the query’s result.

� Lozenge nodes are used to specify that the

constraint or the information searched can be on

items, attributes or PCDATA.

� The relationship between two XML items is

represented by means of a directed arrow from the

container to the contained item. Arrows with

double line express the ascendant-descendant

relationship; i.e. the transitive closure of the

relationship.

� Binding edges are used to specify constraints

between outputs and original data (source part) or

outputs and meta-document data. The binding edge

between the item nodes states that the query result

shall contain as many items (elements) as those

matched in the source part or meta-document part.

They can only connect XML item to other XML

item and attribute to other attribute.

 3.1.2. Operators:

In order to specify the temporal and spatial

relationships, we propose the integration of new

operators.

� Join connections express the association between

the document and its meta-document (Cf. Annex).

The join connection is visually represented with

this symbol . It links the attribute

“name” of meta-document’s root and the source

document.

� The operator “OR” is used to represent the binary

OR.

� Spatial relationships are depicted as dashed and

labeled arrows to connect XML items

and attributes in the graph. Their label represents a

list of spatial operators [ç] as follows: sd (the

disjunction), sa (the adjacency), so (the

overlapping) and si (the inclusion).

� Temporal relationships are depicted as dashed and

labeled arrows to connect XML items

and attributes in the graph. Their label represent a

list of spatial operators [ç] as follows: “<” (before),

- 123 - - 123 -

“=” (equals), “tm” (meets), “to” (overlaps), “td”

(during), “ts” (starts) and “tf” (finishes).

The orientation of these last two links is a matter of

ordering links between meta-data according to

temporal and spatial axis, from the top of the meta-

document to its end. Both concepts and these operators

allow us to draw queries. Thus, as shown in figure 3,

our query environment has three different parts.

Figure 2: Generic model of a query

The left hand side (Frame 1) is used to specify

condition linked to meta-document. The right hand

side (Frame 2) is used to specify condition linked to

the document source. The third part, which is located

under source document and meta-document parts, is

used to define the output result. The document and

meta-document sides are optional, but the construct

side is compulsory. In fact, the user can define the

needed output structure based on only the source

document or on the meta-document and its original

document.

The correspondence between the components of the

three parts is expressed by explicit bindings that cross

the horizontal line and connect the nodes of the source

part or meta-document part to the nodes that will take

their place in the output document.

Let us present now some graphical queries and their

corresponding translation into XQuery code.

3.2. Some query examples

According to several researches, multimedia

documents are annotated and designed by a collection

of meta-document enriched by spatio-temporal links

[9]. The spatial and/or temporal operators enable

explaining how meta-data are connected in space

and/or in time. Since documents and meta-documents

are based on XML structures, it seems that using XML

query language is more suitable. Many textual

languages were proposed and analyzed by the database

community [1,3] such as XQL, XML-QL, Lorel,

XQuery, …

XQuery is the current standard for querying XML data

released by W3C [5]. It can extract data from XML

documents and construct new XML ones. It allows the

integration of new user’s defined functions in case of

complex queries. So, we choose to use XQuery in our

work.

We show in the next sub-sections, two examples of

graphical queries and their translation into XQuery.

The first example is applied to textual documents,

when the second is applied to multimedia ones.

Note, that we take into account the structure of

meta-document proposed in [8] and the spatial and/or

temporal characteristics.

3.2.1 Querying textual meta-documents

Consider the query q1: "Retrieve the title of French

textual documents about Information Retrieve and

written by M.Dupont"

To represent the query, we need the rechvalatt

function, defined as follows:

declare function rechvalatt($e as element(),
$val as xs:string) as xs:integer
{
for $a in distinct-values($e)
 if ($a//attribute()=$val) then 1
 else 0
}

The function rechvalatt verify if the val argument is

any attribute of the first parameter or no. Using this

function, query could be written as follows:

<Result>
let $p:= document("meta-doc.xml")
/Text_File[@name])
for $b in document ($p)
let $c:=$p[@language= "French "]
where
$b/authors/text () ="M.Dupont" and
[(rechvalatt($c, "retrieve")=1 and
rechvalatt($c, "Information")=1) or
rechvalatt($c, "Information Retrieve")=1]
return { $a/title/text()}
</Result>

XQuery is designed for meeting the requirement of

skilled programmers, but it’s rather cryptical for

unskilled users.

Let us translate this query in graphical representation

exploiting our concepts and operators. It is depicted in

figure 3.

Figure 3 : Example of a graphical querying textual
document

Frame 1 Frame 2

Frame 3

Text_File

Language
Name

French *

Information retrieval

doc

Author Title

Result

Title

M.Dupont

- 124 - - 124 -

First, we extract data from the meta-document

part. The figure lists all Text_File nodes with a

"language" attribute whose value is "French" and

words "Information Retrieve" can be contained in any

attribute of descendant’s nodes. The constraint of

retrieving all documents having an author whose name

is "M.Dupont" is depicted as the author node whose

PCDATA content equals "M.Dupont". The binding

edge connecting two titles on both sources and

constraint sides is a constraint that the titles in the

result on the construct side are just the titles that

satisfy the condition on the source part and meta-

document part. Finally, a join connection between

source part and meta-document part is necessary for

construction of result query.

3.2.2: Querying multimedia documents

Consider the query 2: "retrieve the title, author and

speaker of the documents about multimedia when the

first text element starts a musical segment".

To express the query with XQuery, we need to define

two functions of our own.

declare function rechvalelt($e as element(),
$val as xs:string) as xs:integer
{ for $a in distinct-values($e)
 if (contains($a//*/text(),$val) then 1
 else 0
}

The first function rechvalelt verifies if the val

argument is contained in any element of the first

parameter or no.

declare function linkatt($el1 as element(),
$val as xs:string, $el2 as element(),$el3 as
element()) as xs:integer
{ for ($c in distinct-
values($el3/ST_LINK/TEMPORAL_LINK)
 if($el1[@ident]=$c[@id1] and $c[@link]=
$val and $el2[@ident]=$c[@id2]) then 1
 else 0
}

The second function linkatt search if the third first

arguments were existed on the tag "ST_LINKS".

Using these functions, query could be written as

follows:

<Result>
let $a:=(document(" meta-doc.xml")//
document#0[@name])
for $b in document ($a)
where
(rechvalatt($a/Text_File, "multimedia") =1 or
rechvalelt($a/Video_File,"multimedia")=1 or
rechvalelt($a/audio_File,"multimedia")=1) and
linkat($a/Text_File[1],
"ts",$a/Segment[@nature=music], $a)=1

return
{
<Title> $b/title </Title>
<Authorr> $b/Author</Auteur>

<Speaker> $a/Segment[@nature=parole]/ Speaker
</Speaker>
}
</Result>

Let us translate this query in graphical representation

exploiting our concepts and operators. It is depicted in

figure 4.

Figure 4: Example of graphical querying multimedia
document

First, we extract data from the meta-document part.

“Multimedia” can be contained as “key-word”

attribute or as Title node for Textual_File, or as

key_word attribute in video or audio file. The second

constraint “the first text element starts a musical

segment” is depicted as arrows from Text_File[1]

element to segment element labeled as “ts”. The

binding edge connecting two Speakers on both meta-

document and construct sides is a constraint that

Speakers in the result on the construct side are just the

Speakers that satisfy the condition on the meta-

document and source document part. Note that not

only Speaker element is bound in the construct part,

but also Title and Author elements, which are

connected respectively to Title and Authors items in

the source document part. In this way, the result

contains element extracted by meta-document and

source document part that satisfy conditions.

The following section presents the extension of the

XQuery helping the user to make easily graphical

queries.

4. XQuery extension

Xquery is designed for meeting the requirement of

skilled programmer. It can express rich queries over

structured data and multimedia documents, it can only

express very rudimentary queries over text data. For

instance, XQuery allows user to define new functions

in order to express their real complex needs. We claim

Meta-doc

*
Title Author

Title
Name

*

OR

Text_File[1]
Segment

Nature

Multimedia
Multimedia

Segment

Speaker ts

Result

 music

 Speaker Title Author

- 125 - - 125 -

that the supported definition of functions is sufficient

for simple queries but it is woefully inadequate for

more complex searches. We thus propose an extension

of this language, called XQuery ++, which provides a

rich set of spatial and temporal operators.

This section formally defines our proposal for the

extension of XQuery which can be generated by our

application interface. We describe this extension by

means of an EBNF grammar; terminals are enclosed in

double apexes and non terminals are bold characters.

In the following, we introduce the syntax of the new

introduced operators and we give some examples

using these operators.

We propose to add new operators called

ComputedDocumentConstructor, RepEpr and

OperatorExpr expressions. Note that in our extension,

we used the common XQuery expression’s syntax.

4.1. ComputedDocumentConstructor operator

The ComputedDocumentConstructor has the

following syntax:

ComputedDocumentConstructor ::= <("document"

|"metadocument")"{">ExpeSequence"}"

"document" and "metadocument" are terminals

specify that the search must be into source file or

meta-document file.

Such example for the query1 we can use these

operator as follows:

<Result>
let $p:= document("meta-doc.xml")
/Text_File[@name])
for $b in document ($p)
let $c:=$p[@language= "French "]
where
$b/authors/text () ="M.Dupont" and
[(rechvalatt($c, "retrieve")=1 and
rechvalatt($c, "Information")=1) or
rechvalatt($c, "Information Retrieve")=1]
return { $a/title/text()}
</Result>

The keyword "metadocument" sets the search for

meta-document, when, the key word document set

search for only simple document.

4.2 RepExpr operator

The RepExpr has the following syntax:

RepExpr ::= <("Repdoc"| Repmetadoc")

 "("NmChar")"> Expr

We have introduced RepExpr within ValueExpr

XQuery expressions. This new operator represents the

search into document directory or meta-document

directory. The above exp ression returns a document

file or a meta-document file or a meta-document that

meets the query condition.

 4.3 OperatorExpr operator

The operator OperatorExpr is used within a

whereClause expression as follows:

whereClause ::= "where"(Expr | OperatorExpr)

The OperatorExpr has the following syntax:

OperatorExpr ::= (SpatialOperator |

TemporalOperator)*

The " | " operator builds the union of two operators:

spatial and temporal. The wildcard "*" in

OperatorExpr expression means that we can take zero

or more sequences of SpatialOperator |

TemporalOperator as input.

4.3.1. SOperator operator

The SpatialOperator has the following syntax:
SpatialOperator ::= "("Expr <SOperator> Expr ")"

SOperator ::= DisjonctionOperator |

AdjacencyOperator |

OverlappingOperator|

inclusionOperator

DisjonctionOperator ::= "sd"

AdjacencyOperator ::= "sa"

OverlappingOperator ::= "so"

inclusionOperator ::= "si"

This operator represents the spatial relationship between

items into meta-document, it defines the space used for the

presentation of an image.
4.3.2. TOperator operator

In the same way, TemporalOperator represents the
temporal relationship. It has the following syntax:

TemporalOperator ::= "(" Expr <TOperator> Expr ")"

TOp erator ::= beforeExpr | equalsExpr | meetsExpr |

overlapsExpr | duringExpr | startsExpr |

finishiesExpr | afterExpr | metbyExpr |

overlapedExpr | containsExpr |

startdbyExpr | finishiedbyExpr

beforeExpr ::= "before" | "<T"

equalsExp r ::= "equals" | "=T"

meetsExpr ::= "meets" | "tm"

overlapsExpr ::= "overlaps" | "to"

duringExpr ::= "during" | "to"

startsExpr :: = "starts" | "ts"

- 126 - - 126 -

finishiesExpr ::= "finishies" | "tf"

afterExpr :: = "after" | ">T"

metbyExpr :: = "metby" | "tmi"

overlappedExpr ::= "overlappedby" | "toi"

containsExpr ::= "contains" | "tdi"

startedbyExpr :: = "startedby" | "tsi"

finishedbyExpr ::= "finishedby" | "tfi"

Both, SpatialOperator and TemporalOperator return

true if a spatial or temporal relationship between two

XML items within Meta-document file.

SOperator is a list of spatial elementary operators such

as DisjonctionOperator, AdjacencyOperator,

OverlappingOperator and inclusionOperator.

The second query can use these operators. In this case,

we need only to define rechvalatt function.
<Result>
let $a:=(document("meta-doc.xml")//
document#0[@name])
for $b in document ($a)
where
(rechvalatt($a/Text_File, "multimedia") =1 or
rechvalelt($a/Video_File,"multimedia")=1 or
rechvalelt($a/audio_File,"multimedia")=1) and
($a/Text_File[1],
"ts",$a/Segment[@nature=music])
return
{
<Title> $b/title </Title>
<Author> $b/Author</Author>
<Speaker> $a/Segment[@nature=parole]/ Speaker
</Speaker>
}
</Result>

5. Overview of our query environment

This section, briefly, describes the implementation of our

proposal.

Queries are displayed in a window composed of three parts

(source, meta-document and construct). Using the tools box,

users can draw his queries. Let’s take the second query

example (Cf. § 3.2.) to represent it using our interface. Once

the users complete their queries they can compile them using

XQuery button to find the query result. The tool assists the
user draw correctly their queries.

6. Conclusions and future Work

In this paper, we have presented a graphical query

language for semi-structured data based on the

XQuery language. We have, also, proposed the

extension of the XQuery language by means of new

spatio-temporal operators. This contribution may

improve information retrieval and querying XML data

offering a user friendly interface.

Our future research works concern first, to enhance the

language and to map the proposed graphical

expressions into a standard formalism. Then in the

second step, we will expand our concepts and

operators in order to resolve many query problems.

We will, also further, develop tools to help users.

7. References

[1] M.Fernadez, J.Siméon, P.Waleder, S.Cluet, A.Deusch,

D.Florescy, A.Levy, D.Maier, J.McHugh, J.Robie, D.Suciu

and J.Widom. “Xml Query languages: Experience and

examples”. 1999
[2] Irna M.R.Evangelist Flha, Alberto H.FLLaender and

Altigran S.daSilva. Querying Semistructured data by

example: the qsby interface.

[3] Z.G.Ives and Y.Lu. XML query languages in practice: an
evaluation. In WAIM’00 2000

[4] R.Goldman, J.McHugh, J.Widom, "From Semistructured

Data to XML: Migrating the Lore Data Model and Query

Language", International Workshop on the Web and

Databases (WebDB'99), pp.25-30, Philadelphia, June 1999,
Pennsylvania, USA.

[5] D.Chamberlin, D.Florescu, J.Robie, J.Siméon et

M.Stéfanescu, "XQuery 1.0: An XML Query Langage", W3C

Working Draft, juin 2001.

[6] M.Zloof. "Query by example: A database language".
IBM systems Journal, Vol. 21, N°3, pp.324-343, 1977.

[7] S.Kepser, "A.proof of the turing-completenesse of xslt

and xquery", Technical report SFB 441, Eberhard karls

Universitiat Tubingen, May 2002.

[8] I.Amous. "Méthodologies de conception d'applications
hypermédia-Extension pour la réingéniere ds sites web".

Thèse de doctorat, Université Paul sabatier-Toulouse 3,

Décembre 2002.

[9] I.Amous, A.Jedidi, F.Sèdes, "A Contribution to

multimedia document modeling and querying". XXI ème
congrès d'inforsid, pp.407-422, 25-28 Mai 2004,

Biarritz/France.

[10] W.Nei, T.W. Ling. "GLASS: a Graphical Query

Langage for Semi-structured Data", Dasfaa2003, pp.363-

370, March 26-28, 2003, Kyoto, Japan.

[11] http://www.w3.org/TR/xquery/#XQL

[12] http://www.w3.org/TR/1998/NOTE-xml-ql-19980819

[13] http://www.w3.org/TR/xquery/#XPath

[14] http://www.w3.org/TandS/QL/QL98/pp/xml-gl.html

- 127 - - 127 -

