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Abstract

In many applications, ontologies are used to explicit 

formalization of the conceptualization of the domain, but 

a given domain can be conceptualized through many 

different ontologies. On the other hand, within the last 

years, many ontologies are created and are accessible 

over the web. Thus multiples ontologies connected by 

semantic relations emerge as a core question and 

became an essential issue of interoperability between 

distributed applications over the web. 

In this paper, we present a formalism  for describing 

ontologies according to different levels of abstraction: 

functional level contains generic ontologies and the  

domain level contains  domain ontologies. The latter are 

described from the former by using a derivation process.  

The proposed formalism is based on an  algebraic 

approach and it allows to capture the relations over 

different described ontologies. To illustrate the proposed 

formalism, we consider an examples from the urban 

domain. 

1. Introduction 

In the early 90’s , the ontologies are originally developed 
in the knowledge engineering community  to support the 

knowledge sharing and reuse. An ontology provides a set 
of best founded constructs that can be used to build 

meaningful higher level knowledge. [7] defines an 

ontology as an explicit specification of conceptualization. 
In fact, an ontology is the theory about how a given 

domain is structured, what sorts of concepts it contains, 

what sorts of relationships exist among them, and so on.  

With the emergence of the semantic web, the  ontology 

research has been accelerated and advocated as support of 
interoperability between distributed applications over the 

web. The main purpose of an ontology is to support 

exchange and communication, without misunderstanding, 

among users and agents.  Nowadays, ontology is being 
put to use for many practical purposes in many other 

areas.  For more detailed descriptions and bibliography of 

the field see the published survey:  [1] gives a review of 
ontology-based approaches to semantic integration, [2]  

provides a survey of the most relevant ontological 
modeling approaches and [3, 8] describes the current state 

of the art of ontological engineering and it covers theory, 

tools and applications.

1.1. Motivation 

Different autonomously developed applications can 
meaningfully collaborate and communicate by using a 

shared ontology. unfortunately, an unique shared 

ontology describing all possible domains is very fast to 
develop and unachieved in practice.  In addition, the 

same domain can be described by different ontologies in 

a heterogeneous way: the very same concept can be 
described in different manner and at a different level of 

detail by more than one ontology. On the other hand,  
within the last years, many ontologies are created and 

are accessible over the web. Semantic interoperability , 

therefore, can be solved by relating different ontologies 
via semantic mapping [4]. 

Guarino classifies ontologies by considering two criteria : 
level of detail and level of dependence. Several types of 

ontologies can be distinguish.  In particular, there are the 

top-level ontologies and the domain ontologies [5].  In [6] 
the authors  propose a multi-layered spatial ontologies 

definition framework for urban applications.   

1.2. Contribution and organization of the paper 

In this paper, we present formalism for describing the 
multi-leveled ontologies and their relations. To illustrate 
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this formalism, we consider an examples from the urban 

domain. In the proposed formalism, different ontologies 

are described according different levels of abstraction. 
The functional level contains generic ontologies and the 

domain level contains domain ontologies. The derivation 

process permits to describe ontologies of the domain 
level from those of the functional level (see Figure 1). 

This aspect of defining ontologies by level allows to 
have minimal ontologies by level. It avoids defining a 

global and maximal ontology which is difficult to 

specify completely for a given domain. The  proposed 
formalism is based on an  algebraic approach. Entities of 

the functional level are represented by abstract classes.

Each class is described by its intension which is 
constituted by a set of its attributes and functions. The 

attributes and functions arguments take values in 

abstract data types (ADT) or in abstract classes. We use 
the algebraic specification to describe the ADT. Entities 

of the domain level are represented by the concrete 

classes. The latter are described from the abstract classes 

by derivation process. This process consists mainly in 

interpreting abstract data types by domains of values and 
each abstract class by set of the concrete classes 

(carriers). We illustrate the proposed formalism by 

examples from the urban domain. 

Figure. 1. Multi-leveled ontologies for urban applications 

The remainder of the paper is organized as follows. 

Section 2 discusses background and related issues of 
ontologies and ontology mapping. To clarify the 

proposed formalism, sections 3 introduces some 
definitions and notations concerning the algebraic 

specifications. The proposed formalism is developed in 

sections 4 and 5 and it is illustrated by examples from the 
urban domain. Section 6 study the relations between 

ontologies. Section 7 presents some related work.  

Finally, section 8 concludes the paper. 

2. Multi-layered ontologies and ontology 

mapping

In [6], the authors present a methodology to define multi-

leveled ontologies for urban applications. This 

methodology is based on notions of abstraction and 

organization of the information in thematic layers within 

the spatial systems. Each thematic layer is characterized 

by a generic set of  functionalities. For instance, the 

entities of the thematic layers ( roads networks, electric 

networks, water pipe networks, etc.) share common 

functional features. So they can be described by a generic 

functional entity ( called network ) based on graph 

terminology and graph traversal operations which 

includes: inter-nodes distance evaluation, path cost 

optimization, path traversal, etc. This description is made 

without any implication of application domain. For 

example, the nature of objects that traverse the graph is 

less important at this level of abstraction. This 

information will be clarified at the lower level where 

these objects will be cars in the case of the road networks 

or the flows in the case of the drinking water system. 

Similarly, a two-dimensional spatial objet (called 

coverage) can be used to define the generic functional 

features of the entities of the thematic layers ( Cadastre, 

land occupation, buildings, parks, etc.) including: surface 

computation, distance evaluation, adjacency test, etc. To 

meet the above design requirements, each layer is 

organized into two levels (see Figure 1) : 

- Functional level: it contain generic entities including:  

Node, Link, Surface, etc. ; each entity is  mainly 

represented by an abstract functional  description in the 

generic ontologies. 

- Domain level: it contains specific entities to a given 

domain ( roads networks, Cadastre, land occupation, 

electric networks, etc.).  Their descriptions are obtained 

from the generic entities by a  derivation process. Those 

descriptions constitute the domain ontologies. 

[9, 10] adopt an algebraic approach to descried ontologies 

and their relation. In this case, the ontologies are 
presented as logical theories: an ontology is defined as a 

pair O=(S,A) where S is the ontological signature 

describing the vocabulary and A is a set of ontological 
axioms specifying the intended interpretation of the 

vocabulary in some domain of interest.  The relations 
between ontologies are described by means of ontology 

morphisms. For more detailed descriptions of the field of 

ontology mapping and Semantic Integration 
Technologies, see the published survey [11,12]. 

3.  Algebraic specifications : Background 
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In this section, we introduce some definitions and 

notations in order to clarify the proposed formalism. We 

use the algebraic specifications to describe the data types 
in the generic ontologies in the functional level. In 

general, algebraic specifications are used to capture the 

behavior of objects in a formal manner. It is possible to 
create complex types by using specifications of other. An 

important purpose of specifications is to organize types, 
values and operations [13, 14]. They are based on solid 

mathematical foundations and many methods can be 

applied to them. In the software engineering, they are 
used to describe the  abstract data types and to prove that 

implementation is correct. They are also used in the other 

domain, in particularly in the spatial applications  [15]. 

Definition 1 (Signature) : A signature is a pair  ( S,  Σ ) 

where : 

• S = { s1, s2, …, sn } is a set of sorts.  Each  s∈ S  

denotes a domain of values.  

• Σ  a set of operations applicable to domains denoted  

by the sorts of S.

 
In fact, Σ   is an indexed set (of operations) Σw,s : 

Σ  = { Σw,s , s∈ S  }.

Each Σw,s contain operations σw,s  :

σw,s  : w → s , s ∈ S  et w∈ S*  with  w = (s1,s2, .. ,sn). 

Σ[],s contains operations without arguments and returns a 

constant value.

When the sorts of S are organized by partial order 

relation, we say that ( S,  Σ ) is order-sorted signature. 

Two types of relations can be distinguished: Isa relation 

and Part-of relation. The expression (s2 ≤ s1 ) indicates 

that the sort s2 inherit all the specification and operations 

of the sort s1 . The Part-of   traduces the situation when 
one sort uses an another one. 

One can define an algebra, called Σ-Algebra, relative to a 

signature (S,Σ). This consists in interpreting each sort of 

S by a domain of values and each operation by a function.  

Formally : 

Definition 2 (Σ-Algebra  ): 

Given a signature ( S, Σ ), a Σ-Algebra  is an indexed set 

A, A= { As  , s ∈ S } with an application IA that associate  

each operation σw,s ∈ Σw,s with a function fw,s  = IA (σw,s)
interpreting it: 

fw,s : (As1 x As2 x .. x Asn) → As where w = (s1,s2, .. ,sn)

Asi is interpreting domain of the sort si for i=1..n. 

Note that, ∀ si ∈ S , ∀ sj ∈ S :  sj ≤  si   Asi ⊆  Asj

where Asi et Asj are respectively interpreting domains of  

sorts si and sj.

Definition 3 ( Σ-Homomorphisme) : Given a signature (

S , Σ)  and two Σ-Algèbre A et B. Σ−Homomorphisme h

from A to B is an indexed set of functions { hs : As→ Bs,

s∈ S  } such that, ∀ σw,s∈ Σw,s , ai ∈  Asi for  i= 1 .. n : 

hs ( fw,s (a1, a2,…,an)  ) = gw,s ( hs1 (a1) , …  , hsn (an) ) 

where  fw,s= IA (σw,s) and  gw,s= IB (σw,s)

Definition 4 (Algebraic specification) : An algebraic 

specification is a triple (S, Σ, E) where (S, Σ) is a 

signature, and E is a set of equations defining the 

behavior of the operations of Σ . 

Definition 5 (Model) : A Model, called  MΣ ,  of an 

algebraic specification  (S, Σ, E) is Σ-Algebra  satisfying 
all equations in E.

The specification (S, Σ, E) describes the syntax of the 

abstract data types and the model  MΣ  their semantics. 

Figure. 2:  Functional and domain levels 

In the next section, we present a formalism to describe  

the multi-leveled ontologies for urban applications. These 

ontologies are organized in many layers. Each layer 
contains the entities that share common functional 

features and are described according to two levels of 

abstraction. In the functional level, generic ontologies OG

describe entities using abstract classes ξ. In the domain 

level domain ontologies OD use concrete classes Ψ.  Our 

ontologies specify  entities with attributes to describe 
their proprieties and function describing their functional 

aspect. Axioms are used to  define the semantics of 

attributes and functions. 

4. Generic ontologies 

4.1. Introduction 
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Formally, OG is described by a set of abstract classes ξ
described with their intensions.  The classes of  ξ  are 

organized in hierarchy by the Isa (≤ ) and Part-of 

relations. Each generic entity eG ∈ OG is defined by 

abstract class α∈ξ. The proprieties eG  are described by 

the attributes of α and the functions of  α define the 
behavior of  eG. Constraints expressed by axioms can be 

used to describe semantics of attributes and functions of 

the abstract class  α.

4.2. Formalization 

Let's designate by T a set of abstract data types (ADT) 

defined by an algebraic specification (S,Σ,E) where S is a 
many order-sorted.   

Let's designate by Ρα a set of attributes of α∈ξ and by P

the set of all attributes: P = ∪α∈ξ Ρα.

Note that, ∀ α∈ξ, ∀ β∈ξ, , α ≤ β   ( Ρβ ⊆ Ρα )

Let's designate by Typep an application that associate the 

attributes of classes of ξ with their types:

Typep : ξ  x P → ξ ∪ T 

∀ α∈ξ , ∀ p∈ Ρα , two cases are possible : 

- Typep (α , p) = s ∈ T : the attribute p take values in 

ADT specified by a sort s. Note that Typep (α , p) can be 

a basic type ( integer, real, string, etc.)  

- Typep (α , p) = λ∈ ξ ,  here the attribute  p describe a 

relation (Part-of) between  α and λ.

Let's designate by Fα  a set of function of α∈ξ  and by   F

the set of all functions:  F = ∪α∈ξ Fα . Note that,  ∀ α∈ξ,

∀ β∈ξ, , α ≤ β   ( Fβ ⊆  Fα )

Let's designate by Πα  a set of arguments of functions of 

Fα for α∈ξ , and by Π  the set  of all arguments:    Π = 

∪α∈ξ Πα
Each function  f ∈ Fα is defined by its profile as follow:   

f ( { ak : tK }) → ar : tr

with ak∈ Π α,, tK ∈ (ξ ∪ S), for k = 1 ... m , ar∈ Π α,, tr ∈
(ξ ∪ S)  

Let's designate by Typea an application that associate the 

argument a ∈ Πα   of f∈ Fα with their types:    Typea : ξ
x F x Π → ξ ∪ T 

Two cases are possible :  Typea (α , f, a) = s ∈  T  or

Typea (α , f, a ) = λ∈ ξ .

Let's designate by CardMin and CardMax applications 

that define the minimum and maximum cardinality 

constraints of the attribute p of α∈ξ  :

CardMin : ξ  x P → N   ;  CardMax : ξ  x P → N , N is a

set of natural numbers (integer). Note that :  

If CardMin (α , p) = 1 and  CardMax (α , p) = 1 ; p is a 

mono value attribute 

If CardMin (α , p) = 0 / 1 et  CardMax (α , p) = n ∈ N ; 

p is a multi value attribute 

CardMin (α , p) = n1 ∈ N et  CardMax (α , p) = n2 ∈ N 

; correspond to general case. 

Formally, generic ontology is described, to a high level of 

abstraction, by a  hierarchy of abstract classes ξ. Each 

class α∈ξ is described its intension. This latter  contains a 

set Ρα of attributes and a set Fα  of functions. Each 

function f∈ Fα  is represented by its profile defining the 

types of its arguments. Those latter and attributes types 

are defined by ADTs or by abstract classes.   

Definition 6 (Intension (Iξ)α ) : The intension of abstract 

class α∈ξ, noted (Iξ)α , is given by : 

(Iξ)α = < Ρα ; Typep,α ; CardMinα ; CardMaxα ; Fα  ; 

Typea,α >  such as,  

∀ p∈ Ρα , ∀ f∈ Fα , ∀ a∈ Πα  : 

Typep,α (p) = Typep (α , p) ; 

 Typea,α (f, a) = Typea (α , f, a), 

CardMinα  (p) = CardMin (α , p) ; 

 CardMaxα  (p) = CardMax (α , p) 

Note that  :  ∀ α∈ξ, ∀ β∈ξ,: α ≤ β    (Iξ)β ⊆ (Iξ)α

Definition 7 (Generic ontology):  Generic ontology  OG

is defined by  : 

OG  = < T ; ξ ; Iξ ; Λξ,F   >  where 
- T : Set of ADTs specified by algebraic specification  

(S, Σ, E),

- ξ :  Hierarchy of abstract classes described in intension 

by  Iξ
- Iξ : Set of the intensions of abstract classes, Iξ = ∪α∈ξ
(Iξ)α  where (Iξ)α  is the intension of α∈ξ
- Λξ,F : An indexed set , Λξ,F = { (Λξ,F)α pour α∈ξ}

where  (Λξ,F)α  is the set of axioms relative to the 

functions Fα of α∈ξ.

4.3. Example 

For example, consider the set of generic spatial entities :  

{ Position, Node, Link, Oriented-Link } , described as 
follow:  

Node

  position : Position

  isolated : Boolean

  Get-position(N :Node)→ P : Position

 Is-Isolated(N :Node) → B : Boolean

  … etc. 
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Position 

  x : Number

  y : Number

  Get-x ( P : Position)→ X : Number

  Get-y ( P : Position)→ Y : Number

  Put-x (X : Number)→ P : Position

  Put-y (X : Number)→ P : Position

  Identique ( P1: Position, P2: Position)→ I : Boolean

 Identique (p1, p2) 

  (Get-x (p1) = Get-x (p2)) & (Get-y (p1) = (Get-y (p2)) 

 … etc. 

Link 

  n1 : Node

n2 : Node

  Oriented :  Boolean

  Weight : Number

 Creat-Link(N1 :Node, N2 :Node)→ A :Link

  Get-Weight(A : Link)→ P :Number

     … etc. 

Oriented-Link ≤ Link 

 orientation :  Orientation

  Get-orientation(A :Oriented-Link)→ O :Orientation 

     … etc. 

According to the definition 7 above, we have: 

ξ = { Position, Node, Link, Oriented-Link, etc. } , 

 T = { Number, Boolean, etc. } 

PLink = { n1, n2, Oriented, Weight } ,  

Typep (Link, n1) = Node 

 Typep (Link, Weight) = Number , 

 FPosition = { Get-x , Get-y, Put-x, Put-y, Identique }, 

Typea (Position ,Get-x, X) = Number 

Typea (Position , Put-x, P) = Position. 

5. Domain ontologies 

5.1. Introduction 

The domain level contains entities that are specific to a 

given domain. Those entities are organized in the 

thematic layer. For instance, the entities of water 
networks,  roads networks, electric networks, etc. are 

regrouped in the same layer.  For a given layer, we use 

domain ontology OD to describe the entities of each 
thematic.  Formally, the domain ontologies OD  are 

represented by a set of concrete classes Ψ. Those classes 
are described by their intensions and interpreted by their 

extensions. The classes of Ψ are organized en hierarchy.  

5.2. Formalization 

Let's designate by Ψ  a set of the concrete classes. Note 

by  Ψξ  the set of classes of Ψ  that are directly derived 

from classes of ξ  (Ψξ ⊂ Ψ ).

Let's designate by  Ωc the set of instance of  c∈Ψ and by 

Ω  the set of all instances,   Ω = ∪c∈Ψ Ωc .

Let's designate by  Φ  an application that associate each 

class c∈Ψ  with its instances: Φ (c ) = Ωc :    

Φ : Ψ →Ω, such that

∀ b∈Ψ ∀ c∈Ψ :  b ≤ c Φ (b ) ⊆   Φ (c) 

Let's designate by  Γξ the application defined from  ξ to

Ψ. This  application associates an  abstract class  α∈ ξ.

with a concrete class a∈Ψ.

The  class a, Γξ  (α ) = a, represents the interpretation of 

de α or its derivative.   

Let's designate by  αΓ ⊂ Ψξ the set of a concrete class 

that directly derived from α∈ξ  : 

αΓ = ∪ Γξ (α) with αΓ ⊂ Ψξ

For instance, if α = Link then αΓ = { Road-Link, Electric-

Link, etc. } where  Road-Link and  Electric-Link are

classes of  Ψ. Note that, ∀ c∈αΓ  , Pc = Pα et Fc = Fα.

That is the class c=Γξ (α)  inherit  the attributes and 

functions of  α∈ξ. In this case we have :  P = ∪c∈Ψξ Ρc ;

F = ∪c∈Ψξ Fc. Similarly, we have,  ∀ c∈αΓ, ∀ p∈ Pc :

CardMin(c, p) = CardMin(α, p) ; CardMax(c, p) = 

CardMax(α, p) 

Let's designate by  ΓT   the application that associate each 

sort s ∈ S  with its interpreting domain Ds :

ΓT : S  → MΣ
 MΣ is (definition 5) the model of algebraic specification 

(S, Σ, E)  that is used to describe T in the functional level. 

Let's designate by  Domp an application that associate an 

attribute p∈ Ρc  for c∈Ψ  with its values domain noted 

Domp (c,p) :

Ψ x P → D , where D = Ω ∪ MΣ such that   

∀ c∈αΓ, ∀ p∈ Pc :   

Domp (c, p) = Φ ( Γξ (β) ) if  typep (α,p)=β ∈ ξ.,

Domp (c, p) = Ds if  typep (α,p) = s ∈ S, with Ds =ΓT (s). 

Note that,  ∀ c∈Ψ, ∀ d∈Ψ : 

c ≤ d &  p∈ Ρd  Domp(c, p) ⊆  Domp(d, p) 

o ∈ Φ(c)  &  p∈ Ρc   p(o) ∈ Domp(c, p) ;   

p(o) is the value of the attribute  p∈ Ρc  for the instance 

o∈ Φ(c). 

Let's designate by  Πc  a set of arguments of  Fc  for c∈Ψ
and by  Π  the set of all arguments: Π = ∪c∈Ψ Πc .
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Let's designate by  Doma an application that associate an 

argument  a ∈ Πc   of f∈ Fc with its values domain, noted 
Doma (c,p) :

Doma : Ψ  x F x Π → D such that   ∀ c∈αΓ, ∀ f∈ Fc , ∀
a ∈ Π c :

Doma (c, f, a)  = Φ( Γξ (β) )   if     typea (α,f,a)=β ∈ ξ.,

Doma (c, f, a) = Ds  if typea (α,f,a)= s ∈ S,  

with Ds =ΓT (s).

Definition 8 (Intension IΨ,c
 ) : The intension of a 

concrete class  c∈Ψ,  noted IΨ,c, is given by : 

IΨ,c = < Ρc ; Dompc ; CardMinc ; CardMaxc ; Fc  ; 

Domac >   

where

∀ p∈ Ρc , ∀ f∈ Fc , ∀ a∈ Πc :

Dompc (p) = Domp (c , p)   ;   

 Domac (f, a) = Doma (c , f, a) ; 

CardMinc  (p) = CardMin (c , p)   ; 

 CardMaxc  (p) = CardMax (c , p 

According to the above definition, we have,  ∀ c ∈Ψ, ∀
d c∈Ψ :

c ≤  d   ( IΨ,d ⊆ IΨ,c )

Definition 9 (Domain ontology): Domain ontology is 

defined by : 

OD  = < MΣ ; Ψ ; IΨ ; Γ ; ΛΨ,F  ;ΛΨ,P  > where 

MΣ  : Model of algebraic specification (S,Σ, E),

MΣ = ∪s∈S Ds

Ψ : Hierarchies of concrete classes described by its  

intension IΨ
IΨ : Set of the intensions of classes of Ψ, IΨ  = ∪c∈Ψ IΨ,c

Γ : Derivation function   Γ = (ΓT , Γξ )

ΛΨ,F : An indexed set : ΛΨ,F  = { (ΛΨ,F)c pour c ∈Ψ }

where  (ΛΨ,F)c  is a set of axioms associated to functions 

Fc of  c ∈Ψ.

ΛΨ,P : An indexed set : ΛΨ,P  = { (ΛΨ,P)c pour c ∈Ψ }

where  (ΛΨ,P)c is a set of axioms associated to attributes 

Pc of  c ∈Ψ.

The axioms of  ΛΨ,P   can be expressed in different 

manners. One can use rules. For instance, the following 

rule can be used to define dependency between two 

attributes p∈ Ρc et   p’∈ Ρc of the same class c ∈Ψ  :  ∀
o∈ Φ(c),    p(o) = v   p’(o) = v’. 

One can also use an equation to define constraints on 

values of attributes. For instance, the equation below 

constraints  values of the attribute Age ∈ PYoung  such 

that   (Young ≤  Individu ):     

∀  o∈ Φ(Young),    Age(o)  <= 35. 

5.3. Example 

Figure 3, illustrate an example of domain ontology. Here 

we have:

NodeΓ  = { Road-Node, Water-Node,, etc. }, 

Public  ≤    Place ≤  Road-Node  ;      

 Manual ≤ Vane ≤  water_Node

Note that classes of Ψ are hierarchically organized.   

The top of this hierarchy are classes of αΓ = ∪ Γξ (α),

α∈ ξ..   

Figure 3. Example of domain ontology 

6.  Inter-ontology relationships  

Ontology mapping is important when deal with multiple 
ontologies. 

Many Inter-ontology relationships can be expressed [28, 

20]. These relations can be defined at both functional and 
domain level. Figure 4 illustrates possible examples of 

relationships between entities. 

Figure 4. Examples of  Inter-ontology relationships

Relation (R1) : correspond to the derivation process. This 

relation enables us to maintain link between generic 

entities pertaining to the functional level and the specific 
entities of domain level that derives from them.  

Relation (R2) : correspond mainly to topological link 

amongst spatial entities (inclusion, intersection, etc.).  For 
example, this type of relationships permit to maintain a 

link between entities pertaining to a water network 
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(running water pipe) and a entity of Cadastre planing  

(zone traversed by this pipe).  

Relation (R3) :  this type of relation correspond to the 
following different situations: 

Two entities of differences theme can cover the some 

spatial area. It may be the case, for instance, between 
road entity (an avenue) and an electric network entity ( 

electric wire buried along this avenue) or the case of  a 
building  situation (the building itself) and the area on 

which it is build. 

To formalize those relations an algebraic approach can be 

possible as described in [28]. In order to just point the 

problem, let’s  consider a simple case. For  α∈ξ  , p∈ Pα
such typep (α,p) = s ∈ S, one can define a Σ-
homomorphisme h as follow: 

h : Ds → D’s with   

Domp(c,p)=Ds ; 

 Domp(d,p)=D’s ; c∈ αΓ and d∈ αΓ

To illustrate this by an example, consider the abstract 

class α = Person,  and the  attribute p∈ Pα , p = sexe.

Given αΓ = { Individu ,Human } and suppose that:  

Domp ( Individu, sexe ) = DSexe

=  { ‘Masculine’, ‘Feminine’ }  

Domp ( Humain, sexe ) = D’Sexe 

=  { ‘Man’, ‘Woman’  } 

A possible Σ-homomorphisme hsexe  can be defined as 

follow:  

hsexe (‘Masculine’) = ‘Man’ and   

hsexe (‘Feminine’) = ‘Woman’ 

7. Related word 

The work presented in this article concerns the problem 

of description of ontologies and their relations. It is 
partially inspired by the work presented in [6,9]. Like [6] 

we consider the case of an urban application and multi-

layered spatial ontologies but in this paper we presents a 
formalism based on algebraic approach to describe and 

study the such ontologies. Unlike [9] that descried, in 

general an theoretical manner,  an algebraic approach to 
describe ontologies and their relation, we use the such 

approach to deal with a concrete example from urban 

application.  

8. Conclusion and future work 

In this paper, we present a formalism to describe the 

multi-leveled ontologies for urban applications. The 

proposed formalism is based on the fact that the spatial 

systems can be viewed as comprising several abstract 

layers, each defining a generic set of functionalities. Each 

layer contains the entities that share common functional 

features and are described according to two levels of 

abstraction. In the functional level, generic ontologies 

describe entities using abstract classes.  In the domain 

level ontologies are described by concrete classes.  Our 

ontologies specify  entities with attributes to describe 

their proprieties and function describing their behavior. 

Axioms are used to  precise the semantics of attributes 

and functions. We use the ADT to describe the abstract 

classes.  Process derivation allows us to describe the 

domain specific entities from the generic entities. It 

consists mainly in interpreting in the domain level the 

ADT by their models and each abstract class by a set of 

concrete classes. The latter are the top of the hierarchy of 

the classes in the domain level.  

Σ−homomorphisme can be used to make relations 

between entities from the same level. Other types of 

relations, that are not developed in this paper can be used. 

Its an interesting issue to explore and to investigate. 

Another issue to explore is the study of the 

implementation of  proposed formalism using an XML 

language like OWL. This will enable us to study the 

limits of this formalism.  It is also interest to seek who 

this framework to describe the multi-leveled ontologies 

can be use  in the other applications, in particularly, the e-

learning domain.
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