
Formalism to describe multi-leveled ontologies for urban

applications

El Hassan Abdelwahed
Département d’informatique, Faculté des Sciences Semlalia Marrakech

BP 23 90, Bd My Abdellah Marrakech Maroc
Tel: 212 44 43 46 49, Fax: 212 44 43 67 69

Email: abdelwahed@ucam.ac.ma

Abstract

In many applications, ontologies are used to explicit

formalization of the conceptualization of the domain, but

a given domain can be conceptualized through many

different ontologies. On the other hand, within the last

years, many ontologies are created and are accessible

over the web. Thus multiples ontologies connected by

semantic relations emerge as a core question and

became an essential issue of interoperability between

distributed applications over the web.

In this paper, we present a formalism for describing

ontologies according to different levels of abstraction:

functional level contains generic ontologies and the

domain level contains domain ontologies. The latter are

described from the former by using a derivation process.

The proposed formalism is based on an algebraic

approach and it allows to capture the relations over

different described ontologies. To illustrate the proposed

formalism, we consider an examples from the urban

domain.

1. Introduction

In the early 90’s , the ontologies are originally developed
in the knowledge engineering community to support the

knowledge sharing and reuse. An ontology provides a set
of best founded constructs that can be used to build

meaningful higher level knowledge. [7] defines an

ontology as an explicit specification of conceptualization.
In fact, an ontology is the theory about how a given

domain is structured, what sorts of concepts it contains,

what sorts of relationships exist among them, and so on.

With the emergence of the semantic web, the ontology

research has been accelerated and advocated as support of
interoperability between distributed applications over the

web. The main purpose of an ontology is to support

exchange and communication, without misunderstanding,

among users and agents. Nowadays, ontology is being
put to use for many practical purposes in many other

areas. For more detailed descriptions and bibliography of

the field see the published survey: [1] gives a review of
ontology-based approaches to semantic integration, [2]

provides a survey of the most relevant ontological
modeling approaches and [3, 8] describes the current state

of the art of ontological engineering and it covers theory,

tools and applications.

1.1. Motivation

Different autonomously developed applications can
meaningfully collaborate and communicate by using a

shared ontology. unfortunately, an unique shared

ontology describing all possible domains is very fast to
develop and unachieved in practice. In addition, the

same domain can be described by different ontologies in

a heterogeneous way: the very same concept can be
described in different manner and at a different level of

detail by more than one ontology. On the other hand,
within the last years, many ontologies are created and

are accessible over the web. Semantic interoperability ,

therefore, can be solved by relating different ontologies
via semantic mapping [4].

Guarino classifies ontologies by considering two criteria :
level of detail and level of dependence. Several types of

ontologies can be distinguish. In particular, there are the

top-level ontologies and the domain ontologies [5]. In [6]
the authors propose a multi-layered spatial ontologies

definition framework for urban applications.

1.2. Contribution and organization of the paper

In this paper, we present formalism for describing the
multi-leveled ontologies and their relations. To illustrate

2-9525435-0 © IEEE SITIS 2005 - 92 - - 92 - - 92 -

this formalism, we consider an examples from the urban

domain. In the proposed formalism, different ontologies

are described according different levels of abstraction.
The functional level contains generic ontologies and the

domain level contains domain ontologies. The derivation

process permits to describe ontologies of the domain
level from those of the functional level (see Figure 1).

This aspect of defining ontologies by level allows to
have minimal ontologies by level. It avoids defining a

global and maximal ontology which is difficult to

specify completely for a given domain. The proposed
formalism is based on an algebraic approach. Entities of

the functional level are represented by abstract classes.

Each class is described by its intension which is
constituted by a set of its attributes and functions. The

attributes and functions arguments take values in

abstract data types (ADT) or in abstract classes. We use
the algebraic specification to describe the ADT. Entities

of the domain level are represented by the concrete

classes. The latter are described from the abstract classes

by derivation process. This process consists mainly in

interpreting abstract data types by domains of values and
each abstract class by set of the concrete classes

(carriers). We illustrate the proposed formalism by

examples from the urban domain.

Figure. 1. Multi-leveled ontologies for urban applications

The remainder of the paper is organized as follows.

Section 2 discusses background and related issues of
ontologies and ontology mapping. To clarify the

proposed formalism, sections 3 introduces some
definitions and notations concerning the algebraic

specifications. The proposed formalism is developed in

sections 4 and 5 and it is illustrated by examples from the
urban domain. Section 6 study the relations between

ontologies. Section 7 presents some related work.

Finally, section 8 concludes the paper.

2. Multi-layered ontologies and ontology

mapping

In [6], the authors present a methodology to define multi-

leveled ontologies for urban applications. This

methodology is based on notions of abstraction and

organization of the information in thematic layers within

the spatial systems. Each thematic layer is characterized

by a generic set of functionalities. For instance, the

entities of the thematic layers (roads networks, electric

networks, water pipe networks, etc.) share common

functional features. So they can be described by a generic

functional entity (called network) based on graph

terminology and graph traversal operations which

includes: inter-nodes distance evaluation, path cost

optimization, path traversal, etc. This description is made

without any implication of application domain. For

example, the nature of objects that traverse the graph is

less important at this level of abstraction. This

information will be clarified at the lower level where

these objects will be cars in the case of the road networks

or the flows in the case of the drinking water system.

Similarly, a two-dimensional spatial objet (called

coverage) can be used to define the generic functional

features of the entities of the thematic layers (Cadastre,

land occupation, buildings, parks, etc.) including: surface

computation, distance evaluation, adjacency test, etc. To

meet the above design requirements, each layer is

organized into two levels (see Figure 1) :

- Functional level: it contain generic entities including:

Node, Link, Surface, etc. ; each entity is mainly

represented by an abstract functional description in the

generic ontologies.

- Domain level: it contains specific entities to a given

domain (roads networks, Cadastre, land occupation,

electric networks, etc.). Their descriptions are obtained

from the generic entities by a derivation process. Those

descriptions constitute the domain ontologies.

[9, 10] adopt an algebraic approach to descried ontologies

and their relation. In this case, the ontologies are
presented as logical theories: an ontology is defined as a

pair O=(S,A) where S is the ontological signature

describing the vocabulary and A is a set of ontological
axioms specifying the intended interpretation of the

vocabulary in some domain of interest. The relations
between ontologies are described by means of ontology

morphisms. For more detailed descriptions of the field of

ontology mapping and Semantic Integration
Technologies, see the published survey [11,12].

3. Algebraic specifications : Background

Domain level

Network

Cadastre

Land Occupation

Building

Roads network
WaterPipe

Electric network

Functional level

Derivation

Coverage

Derivation

 - 93 - - 93 - - 93 -

In this section, we introduce some definitions and

notations in order to clarify the proposed formalism. We

use the algebraic specifications to describe the data types
in the generic ontologies in the functional level. In

general, algebraic specifications are used to capture the

behavior of objects in a formal manner. It is possible to
create complex types by using specifications of other. An

important purpose of specifications is to organize types,
values and operations [13, 14]. They are based on solid

mathematical foundations and many methods can be

applied to them. In the software engineering, they are
used to describe the abstract data types and to prove that

implementation is correct. They are also used in the other

domain, in particularly in the spatial applications [15].

Definition 1 (Signature) : A signature is a pair (S, Σ)

where :

• S = { s1, s2, …, sn } is a set of sorts. Each s∈ S

denotes a domain of values.

• Σ a set of operations applicable to domains denoted

by the sorts of S.

In fact, Σ is an indexed set (of operations) Σw,s :

Σ = { Σw,s , s∈ S }.

Each Σw,s contain operations σw,s :

σw,s : w → s , s ∈ S et w∈ S* with w = (s1,s2, .. ,sn).

Σ[],s contains operations without arguments and returns a

constant value.

When the sorts of S are organized by partial order

relation, we say that (S, Σ) is order-sorted signature.

Two types of relations can be distinguished: Isa relation

and Part-of relation. The expression (s2 ≤ s1) indicates

that the sort s2 inherit all the specification and operations

of the sort s1 . The Part-of traduces the situation when
one sort uses an another one.

One can define an algebra, called Σ-Algebra, relative to a

signature (S,Σ). This consists in interpreting each sort of

S by a domain of values and each operation by a function.

Formally :

Definition 2 (Σ-Algebra):

Given a signature (S, Σ), a Σ-Algebra is an indexed set

A, A= { As , s ∈ S } with an application IA that associate

each operation σw,s ∈ Σw,s with a function fw,s = IA (σw,s)
interpreting it:

fw,s : (As1 x As2 x .. x Asn) → As where w = (s1,s2, .. ,sn)

Asi is interpreting domain of the sort si for i=1..n.

Note that, ∀ si ∈ S , ∀ sj ∈ S : sj ≤ si Asi ⊆ Asj

where Asi et Asj are respectively interpreting domains of

sorts si and sj.

Definition 3 (Σ-Homomorphisme) : Given a signature (

S , Σ) and two Σ-Algèbre A et B. Σ−Homomorphisme h

from A to B is an indexed set of functions { hs : As→ Bs,

s∈ S } such that, ∀ σw,s∈ Σw,s , ai ∈ Asi for i= 1 .. n :

hs (fw,s (a1, a2,…,an)) = gw,s (hs1 (a1) , … , hsn (an))

where fw,s= IA (σw,s) and gw,s= IB (σw,s)

Definition 4 (Algebraic specification) : An algebraic

specification is a triple (S, Σ, E) where (S, Σ) is a

signature, and E is a set of equations defining the

behavior of the operations of Σ .

Definition 5 (Model) : A Model, called MΣ , of an

algebraic specification (S, Σ, E) is Σ-Algebra satisfying
all equations in E.

The specification (S, Σ, E) describes the syntax of the

abstract data types and the model MΣ their semantics.

Figure. 2: Functional and domain levels

In the next section, we present a formalism to describe

the multi-leveled ontologies for urban applications. These

ontologies are organized in many layers. Each layer
contains the entities that share common functional

features and are described according to two levels of

abstraction. In the functional level, generic ontologies OG

describe entities using abstract classes ξ. In the domain

level domain ontologies OD use concrete classes Ψ. Our

ontologies specify entities with attributes to describe
their proprieties and function describing their functional

aspect. Axioms are used to define the semantics of

attributes and functions.

4. Generic ontologies

4.1. Introduction

Derivation

Domain Level

OG

Cadastre

Land Occupation

Buildings

OD

Ψ

Functional Level

Coverage ξ

 - 94 - - 94 - - 94 -

Formally, OG is described by a set of abstract classes ξ
described with their intensions. The classes of ξ are

organized in hierarchy by the Isa (≤) and Part-of

relations. Each generic entity eG ∈ OG is defined by

abstract class α∈ξ. The proprieties eG are described by

the attributes of α and the functions of α define the
behavior of eG. Constraints expressed by axioms can be

used to describe semantics of attributes and functions of

the abstract class α.

4.2. Formalization

Let's designate by T a set of abstract data types (ADT)

defined by an algebraic specification (S,Σ,E) where S is a
many order-sorted.

Let's designate by Ρα a set of attributes of α∈ξ and by P

the set of all attributes: P = ∪α∈ξ Ρα.

Note that, ∀ α∈ξ, ∀ β∈ξ, , α ≤ β (Ρβ ⊆ Ρα)

Let's designate by Typep an application that associate the

attributes of classes of ξ with their types:

Typep : ξ x P → ξ ∪ T

∀ α∈ξ , ∀ p∈ Ρα , two cases are possible :

- Typep (α , p) = s ∈ T : the attribute p take values in

ADT specified by a sort s. Note that Typep (α , p) can be

a basic type (integer, real, string, etc.)

- Typep (α , p) = λ∈ ξ , here the attribute p describe a

relation (Part-of) between α and λ.

Let's designate by Fα a set of function of α∈ξ and by F

the set of all functions: F = ∪α∈ξ Fα . Note that, ∀ α∈ξ,

∀ β∈ξ, , α ≤ β (Fβ ⊆ Fα)

Let's designate by Πα a set of arguments of functions of

Fα for α∈ξ , and by Π the set of all arguments: Π =

∪α∈ξ Πα
Each function f ∈ Fα is defined by its profile as follow:

f ({ ak : tK }) → ar : tr

with ak∈ Π α,, tK ∈ (ξ ∪ S), for k = 1 ... m , ar∈ Π α,, tr ∈
(ξ ∪ S)

Let's designate by Typea an application that associate the

argument a ∈ Πα of f∈ Fα with their types: Typea : ξ
x F x Π → ξ ∪ T

Two cases are possible : Typea (α , f, a) = s ∈ T or

Typea (α , f, a) = λ∈ ξ .

Let's designate by CardMin and CardMax applications

that define the minimum and maximum cardinality

constraints of the attribute p of α∈ξ :

CardMin : ξ x P → N ; CardMax : ξ x P → N , N is a

set of natural numbers (integer). Note that :

If CardMin (α , p) = 1 and CardMax (α , p) = 1 ; p is a

mono value attribute

If CardMin (α , p) = 0 / 1 et CardMax (α , p) = n ∈ N ;

p is a multi value attribute

CardMin (α , p) = n1 ∈ N et CardMax (α , p) = n2 ∈ N

; correspond to general case.

Formally, generic ontology is described, to a high level of

abstraction, by a hierarchy of abstract classes ξ. Each

class α∈ξ is described its intension. This latter contains a

set Ρα of attributes and a set Fα of functions. Each

function f∈ Fα is represented by its profile defining the

types of its arguments. Those latter and attributes types

are defined by ADTs or by abstract classes.

Definition 6 (Intension (Iξ)α) : The intension of abstract

class α∈ξ, noted (Iξ)α , is given by :

(Iξ)α = < Ρα ; Typep,α ; CardMinα ; CardMaxα ; Fα ;

Typea,α > such as,

∀ p∈ Ρα , ∀ f∈ Fα , ∀ a∈ Πα :

Typep,α (p) = Typep (α , p) ;

 Typea,α (f, a) = Typea (α , f, a),

CardMinα (p) = CardMin (α , p) ;

 CardMaxα (p) = CardMax (α , p)

Note that : ∀ α∈ξ, ∀ β∈ξ,: α ≤ β (Iξ)β ⊆ (Iξ)α

Definition 7 (Generic ontology): Generic ontology OG

is defined by :

OG = < T ; ξ ; Iξ ; Λξ,F > where
- T : Set of ADTs specified by algebraic specification

(S, Σ, E),

- ξ : Hierarchy of abstract classes described in intension

by Iξ
- Iξ : Set of the intensions of abstract classes, Iξ = ∪α∈ξ
(Iξ)α where (Iξ)α is the intension of α∈ξ
- Λξ,F : An indexed set , Λξ,F = { (Λξ,F)α pour α∈ξ}

where (Λξ,F)α is the set of axioms relative to the

functions Fα of α∈ξ.

4.3. Example

For example, consider the set of generic spatial entities :

{ Position, Node, Link, Oriented-Link } , described as
follow:

Node

 position : Position

 isolated : Boolean

 Get-position(N :Node)→ P : Position

 Is-Isolated(N :Node) → B : Boolean

 … etc.

 - 95 - - 95 - - 95 -

Position

 x : Number

 y : Number

 Get-x (P : Position)→ X : Number

 Get-y (P : Position)→ Y : Number

 Put-x (X : Number)→ P : Position

 Put-y (X : Number)→ P : Position

 Identique (P1: Position, P2: Position)→ I : Boolean

 Identique (p1, p2)

 (Get-x (p1) = Get-x (p2)) & (Get-y (p1) = (Get-y (p2))

 … etc.

Link

 n1 : Node

n2 : Node

 Oriented : Boolean

 Weight : Number

 Creat-Link(N1 :Node, N2 :Node)→ A :Link

 Get-Weight(A : Link)→ P :Number

 … etc.

Oriented-Link ≤ Link

 orientation : Orientation

 Get-orientation(A :Oriented-Link)→ O :Orientation

 … etc.

According to the definition 7 above, we have:

ξ = { Position, Node, Link, Oriented-Link, etc. } ,

 T = { Number, Boolean, etc. }

PLink = { n1, n2, Oriented, Weight } ,

Typep (Link, n1) = Node

 Typep (Link, Weight) = Number ,

 FPosition = { Get-x , Get-y, Put-x, Put-y, Identique },

Typea (Position ,Get-x, X) = Number

Typea (Position , Put-x, P) = Position.

5. Domain ontologies

5.1. Introduction

The domain level contains entities that are specific to a

given domain. Those entities are organized in the

thematic layer. For instance, the entities of water
networks, roads networks, electric networks, etc. are

regrouped in the same layer. For a given layer, we use

domain ontology OD to describe the entities of each
thematic. Formally, the domain ontologies OD are

represented by a set of concrete classes Ψ. Those classes
are described by their intensions and interpreted by their

extensions. The classes of Ψ are organized en hierarchy.

5.2. Formalization

Let's designate by Ψ a set of the concrete classes. Note

by Ψξ the set of classes of Ψ that are directly derived

from classes of ξ (Ψξ ⊂ Ψ).

Let's designate by Ωc the set of instance of c∈Ψ and by

Ω the set of all instances, Ω = ∪c∈Ψ Ωc .

Let's designate by Φ an application that associate each

class c∈Ψ with its instances: Φ (c) = Ωc :

Φ : Ψ →Ω, such that

∀ b∈Ψ ∀ c∈Ψ : b ≤ c Φ (b) ⊆ Φ (c)

Let's designate by Γξ the application defined from ξ to

Ψ. This application associates an abstract class α∈ ξ.

with a concrete class a∈Ψ.

The class a, Γξ (α) = a, represents the interpretation of

de α or its derivative.

Let's designate by αΓ ⊂ Ψξ the set of a concrete class

that directly derived from α∈ξ :

αΓ = ∪ Γξ (α) with αΓ ⊂ Ψξ

For instance, if α = Link then αΓ = { Road-Link, Electric-

Link, etc. } where Road-Link and Electric-Link are

classes of Ψ. Note that, ∀ c∈αΓ , Pc = Pα et Fc = Fα.

That is the class c=Γξ (α) inherit the attributes and

functions of α∈ξ. In this case we have : P = ∪c∈Ψξ Ρc ;

F = ∪c∈Ψξ Fc. Similarly, we have, ∀ c∈αΓ, ∀ p∈ Pc :

CardMin(c, p) = CardMin(α, p) ; CardMax(c, p) =

CardMax(α, p)

Let's designate by ΓT the application that associate each

sort s ∈ S with its interpreting domain Ds :

ΓT : S → MΣ
 MΣ is (definition 5) the model of algebraic specification

(S, Σ, E) that is used to describe T in the functional level.

Let's designate by Domp an application that associate an

attribute p∈ Ρc for c∈Ψ with its values domain noted

Domp (c,p) :

Ψ x P → D , where D = Ω ∪ MΣ such that

∀ c∈αΓ, ∀ p∈ Pc :

Domp (c, p) = Φ (Γξ (β)) if typep (α,p)=β ∈ ξ.,

Domp (c, p) = Ds if typep (α,p) = s ∈ S, with Ds =ΓT (s).

Note that, ∀ c∈Ψ, ∀ d∈Ψ :

c ≤ d & p∈ Ρd Domp(c, p) ⊆ Domp(d, p)

o ∈ Φ(c) & p∈ Ρc p(o) ∈ Domp(c, p) ;

p(o) is the value of the attribute p∈ Ρc for the instance

o∈ Φ(c).

Let's designate by Πc a set of arguments of Fc for c∈Ψ
and by Π the set of all arguments: Π = ∪c∈Ψ Πc .

 - 96 - - 96 - - 96 -

Let's designate by Doma an application that associate an

argument a ∈ Πc of f∈ Fc with its values domain, noted
Doma (c,p) :

Doma : Ψ x F x Π → D such that ∀ c∈αΓ, ∀ f∈ Fc , ∀
a ∈ Π c :

Doma (c, f, a) = Φ(Γξ (β)) if typea (α,f,a)=β ∈ ξ.,

Doma (c, f, a) = Ds if typea (α,f,a)= s ∈ S,

with Ds =ΓT (s).

Definition 8 (Intension IΨ,c
) : The intension of a

concrete class c∈Ψ, noted IΨ,c, is given by :

IΨ,c = < Ρc ; Dompc ; CardMinc ; CardMaxc ; Fc ;

Domac >

where

∀ p∈ Ρc , ∀ f∈ Fc , ∀ a∈ Πc :

Dompc (p) = Domp (c , p) ;

 Domac (f, a) = Doma (c , f, a) ;

CardMinc (p) = CardMin (c , p) ;

 CardMaxc (p) = CardMax (c , p

According to the above definition, we have, ∀ c ∈Ψ, ∀
d c∈Ψ :

c ≤ d (IΨ,d ⊆ IΨ,c)

Definition 9 (Domain ontology): Domain ontology is

defined by :

OD = < MΣ ; Ψ ; IΨ ; Γ ; ΛΨ,F ;ΛΨ,P > where

MΣ : Model of algebraic specification (S,Σ, E),

MΣ = ∪s∈S Ds

Ψ : Hierarchies of concrete classes described by its

intension IΨ
IΨ : Set of the intensions of classes of Ψ, IΨ = ∪c∈Ψ IΨ,c

Γ : Derivation function Γ = (ΓT , Γξ)

ΛΨ,F : An indexed set : ΛΨ,F = { (ΛΨ,F)c pour c ∈Ψ }

where (ΛΨ,F)c is a set of axioms associated to functions

Fc of c ∈Ψ.

ΛΨ,P : An indexed set : ΛΨ,P = { (ΛΨ,P)c pour c ∈Ψ }

where (ΛΨ,P)c is a set of axioms associated to attributes

Pc of c ∈Ψ.

The axioms of ΛΨ,P can be expressed in different

manners. One can use rules. For instance, the following

rule can be used to define dependency between two

attributes p∈ Ρc et p’∈ Ρc of the same class c ∈Ψ : ∀
o∈ Φ(c), p(o) = v p’(o) = v’.

One can also use an equation to define constraints on

values of attributes. For instance, the equation below

constraints values of the attribute Age ∈ PYoung such

that (Young ≤ Individu):

∀ o∈ Φ(Young), Age(o) <= 35.

5.3. Example

Figure 3, illustrate an example of domain ontology. Here

we have:

NodeΓ = { Road-Node, Water-Node,, etc. },

Public ≤ Place ≤ Road-Node ;

 Manual ≤ Vane ≤ water_Node

Note that classes of Ψ are hierarchically organized.

The top of this hierarchy are classes of αΓ = ∪ Γξ (α),

α∈ ξ..

Figure 3. Example of domain ontology

6. Inter-ontology relationships

Ontology mapping is important when deal with multiple
ontologies.

Many Inter-ontology relationships can be expressed [28,

20]. These relations can be defined at both functional and
domain level. Figure 4 illustrates possible examples of

relationships between entities.

Figure 4. Examples of Inter-ontology relationships

Relation (R1) : correspond to the derivation process. This

relation enables us to maintain link between generic

entities pertaining to the functional level and the specific
entities of domain level that derives from them.

Relation (R2) : correspond mainly to topological link

amongst spatial entities (inclusion, intersection, etc.). For
example, this type of relationships permit to maintain a

link between entities pertaining to a water network

Node

Node
Γ

Cross-roadPlace

Public Private

ξ

Ψ
Water-Node

Electric

Vane
Connector

Manual

Water-Node

Domain level

Network

Water network

Road network

Functional level

Cadastre

Building

R
2

R

R
2

R
3

R
1

R
1

Coverage

 - 97 - - 97 - - 97 -

(running water pipe) and a entity of Cadastre planing

(zone traversed by this pipe).

Relation (R3) : this type of relation correspond to the
following different situations:

Two entities of differences theme can cover the some

spatial area. It may be the case, for instance, between
road entity (an avenue) and an electric network entity (

electric wire buried along this avenue) or the case of a
building situation (the building itself) and the area on

which it is build.

To formalize those relations an algebraic approach can be

possible as described in [28]. In order to just point the

problem, let’s consider a simple case. For α∈ξ , p∈ Pα
such typep (α,p) = s ∈ S, one can define a Σ-
homomorphisme h as follow:

h : Ds → D’s with

Domp(c,p)=Ds ;

 Domp(d,p)=D’s ; c∈ αΓ and d∈ αΓ

To illustrate this by an example, consider the abstract

class α = Person, and the attribute p∈ Pα , p = sexe.

Given αΓ = { Individu ,Human } and suppose that:

Domp (Individu, sexe) = DSexe

= { ‘Masculine’, ‘Feminine’ }

Domp (Humain, sexe) = D’Sexe

= { ‘Man’, ‘Woman’ }

A possible Σ-homomorphisme hsexe can be defined as

follow:

hsexe (‘Masculine’) = ‘Man’ and

hsexe (‘Feminine’) = ‘Woman’

7. Related word

The work presented in this article concerns the problem

of description of ontologies and their relations. It is
partially inspired by the work presented in [6,9]. Like [6]

we consider the case of an urban application and multi-

layered spatial ontologies but in this paper we presents a
formalism based on algebraic approach to describe and

study the such ontologies. Unlike [9] that descried, in

general an theoretical manner, an algebraic approach to
describe ontologies and their relation, we use the such

approach to deal with a concrete example from urban

application.

8. Conclusion and future work

In this paper, we present a formalism to describe the

multi-leveled ontologies for urban applications. The

proposed formalism is based on the fact that the spatial

systems can be viewed as comprising several abstract

layers, each defining a generic set of functionalities. Each

layer contains the entities that share common functional

features and are described according to two levels of

abstraction. In the functional level, generic ontologies

describe entities using abstract classes. In the domain

level ontologies are described by concrete classes. Our

ontologies specify entities with attributes to describe

their proprieties and function describing their behavior.

Axioms are used to precise the semantics of attributes

and functions. We use the ADT to describe the abstract

classes. Process derivation allows us to describe the

domain specific entities from the generic entities. It

consists mainly in interpreting in the domain level the

ADT by their models and each abstract class by a set of

concrete classes. The latter are the top of the hierarchy of

the classes in the domain level.

Σ−homomorphisme can be used to make relations

between entities from the same level. Other types of

relations, that are not developed in this paper can be used.

Its an interesting issue to explore and to investigate.

Another issue to explore is the study of the

implementation of proposed formalism using an XML

language like OWL. This will enable us to study the

limits of this formalism. It is also interest to seek who

this framework to describe the multi-leveled ontologies

can be use in the other applications, in particularly, the e-

learning domain.

Bibliographie

1. Semantic Integration: A Survey Of Ontology-Based

Approaches by N.F.Noy. SIGMOD Record, Special Issue on

Semantic Integration, 33 (4), December, 2004

2. Kalinichenko L.A., Missikoff M., Schiappelli F., Skvortsov

N. Ontological Modeling Proceedings of the 5th Russian

Conference on Digital Libraries RCDL2003, St.-Petersburg,

Russia, 2003

3. Mizoguchi, R., Tutorial on ontological engineering - Part 2:

Ontology development, tools and languages. New

Generation Computing, OhmSha & Springer, Vol.22, No.1,

pp.61-96, 2004

4. Distributed Reasoning Services for Multiple ontologies.

Technical Report DIT-04-029 Department of Information

and Communication Technology, 2004

5. N.Guarino: Understanding, building and using ontologies.

International Journal of Human and Computer Studies,

46(2/3), 293 – 310

6. D. Beslimane, E. Leclercq, M. Savonnet, M.N. Terrasse, K.

Yétongnon: On the definition of generic multi-layered

ontologies for urbain applications. Computers,Environment

and Urban Systems, 24 (2000) 191-124

7. T. Gruber: A translation approach to portable ontology

specifications. International Journal of Knowledge

acquisition for knowledge-based systems, 2(5), 199-220,

1993.

 - 98 - - 98 - - 98 -

8. Y.Kalfoglou, Exploring ontologies, ,The Handbook of

Software Engineering and Knowledge Engineering - 2001

9. Trevor J. M. Bench-Capon, Grant Malcolm: Formalising

Ontologies and Their Relations. In Bench-Capon T. et Soda

10. Y.Kalfoglou, M.Schorlemmer "Information Flow based

ontology mapping", In Proceedings of the 1st International

Conference on Ontologies, Databases and Application of

Semantics (ODBASE'02), Irvine, CA, USA, October 2002

11. Y.Kalfoglou, M.Schorlemmer , Ontology mapping: the state

of the art, ,The Knowledge Engineering Review – 2003

12. Y. Kalfoglou, B. Hu, D. Reynolds and N. Shadbolt.

Semantic Integration Technologies Survey. CROSI project,

6th month deliverable. University of Southampton,

Technical Report, E-Print No #10842. May, 2005

13. Simone Veglioni: Classifications in algebraic specifcations

of abstract data types, Technical Report TR-7-96,

Programming Research Group, University of Oxford, Agust

1997, 28 pp..

14. Goguen J. A., R. Diaconescu. An Oxford Survey of Order

Sorted Algebra. Mathematical Structure in Computer

Science, Vol. 4, pp. 363-392, Septembre 1994.

15. Frank, A.U., & Kuhn, W. 1995: Specifying Open GIS with

Functional Languages. In Advances in Spatial Databases

(4th International Symposium, SSD'95 in Portland, ME).

(Egenhofer, M.J., & Herring, J.R., eds.), Lecture Notes in

Computer Science, Vol. Lecture Notes in Computer Science

Vol. 951, Springer-Verlag, pp: 184-195.

 - 99 - - 99 - - 99 -

