
Expressing and Interpreting User Intention in Pervasive Service Environments

Pascal Bihler Vasile-Marian Scuturici Lionel Brunie
Laboratoire LIRIS – UMR 5205, INSA de Lyon

7 avenue Jean Capelle, F-69621 Villeurbanne cedex, France
{pascal.bihler, marian.scuturici, lionel.brunie}@insa-lyon.fr

Abstract

The introduction of pervasive computing environments

enforce new ways of human-machine-interaction. In a per-

vasive service environment, the system middleware should

take care of capturing the user’s expression of an action in-

tention, solving ambiguousness in this expression, and exe-

cuting the final pervasive action. After recalling the Perva-

sive Service Action Query Language (PsaQL), a language

to formalize the user’s intention of composing pervasive

services, this paper presents the next steps of intention treat-

ment in a pervasive service environment: A mathematical

model is given, which helps to express the algorithms per-

forming translation of the user intention into an executable

action. To implement such algorithms, a suitable object-

oriented model representing actions is introduced. In the

scope of PERSE, a pervasive service environment devel-

oped by our research group, a prototype has been developed

and first benchmark results are presented in this paper.

1 Introduction

Pervasive Computing is going to become everyday real-
ity for a large part of our society. A network of omnipresent,
highly embedded computing machines seems reasonable in
the upcoming century in a manner that one even does not
recognize the presence of these computers anymore. In the
way, one perceives (or don’t perceives anymore) his/her1

intelligent environment, the way one interacts with it has to
change as well. The shift is clearly defined from teaching
the user how to interact with a computer to teach the com-
puter how to interact with a user.

Computing devices will move from reactive actions to
proactive ones. In our understanding, “being proactive”
means for a computing system “understanding the user’s in-
tention”, “learning from its action history”, and “proposing

1In the following, we will just use the male form, but the female form
is intentionally included.

an action” or “acting”. These two first aspects touch the two
ways of deriving the action intention, either from an explicit
user directive or by comparing the context information with
the action history. In a pervasive environment bringing dif-
ferent services on different machines together, it should not
be the concern of the service developer to care about the
user intention interpretation, but rather he should rely on a
well defined service interface and concentrate on doing the
service work well.

At the LIRIS laboratory in Lyon, we develop a perva-
sive service environment platform called PERSE. This pa-
per continues the way of interpreting a user intention in
a pervasive service environment and deriving in a formal
way a corresponding action using service composition, first
published in [1]. The proposed approach is integrated in
the PERSE environment and benchmark test have been per-
formed.

The rest of this paper is organized as follows: The chal-
lenges and constraints of a pervasive service environment
are presented by introducing the main aspects of PERSE in
Sect. 2. In the following Sect. 3, the process of handling
the user intention in a pervasive service environment is pre-
sented. We recall the formal language PsaQL and introduce
a formal description of the translation process between the
user’s and the machine’s interpretation, along with corre-
sponding algorithms. This is followed by some benchmarks
guidelines and prototype results in Sect. 5, leading to a short
overview of related work, a conclusion, and a set of open
questions.

2 PerSE: A Pervasive Service Environment

In this section we introduce in an informal way the key
concepts of this paper by presenting the pervasive service
environment PERSE developed by our research group.

Pervasive service environments support the interaction
of independent services collaborating to perform an in-
tended action. It is the task of the middleware to connect
the services in a pertinent and efficient way. We call this
combination of services complete action.

2-9525435-0 © IEEE SITIS 2005 - 175 -- 175 -- 174 - - 174 - - 174 -0000000000- 174 - - 174 - - 175 - - 176 - - 176 - - 177 - - 177 - - 177 - - 177 - - 177 - - 177 - - 177 - - 177 - - 177 - - 177 - - 183 - - 183 -

User-

Intention

User-

Intention

Partial

Action

Partial

Action

Action

Graph

Action

Graph

Complete

Action

Complete

Action

Service

Information

Service

Information

++

Execution

Selection

Derivation

HistoryHistory

ContextContext
++

Figure 1. A user intention is transformed into
a complete action by selecting the optimal ac-
tion from all possible complete actions (ac-
tion graph) matching the user intention, us-
ing the knowledge about available services,
the context information and the execution his-
tory.

PERSE models such a system and offers the interfaces
needed to use the managed services without worrying about
the limits of the pervasive environment. The system con-
sists of inter-connected bases and services: Each service

is managed by a base-application called PerseBase, corre-
sponding to a device included in the pervasive environment.
The PerseBase is responsible for managing the services it
proposes and is capable to construct and start complete ac-
tions. These complete actions are modeled in PERSE as
connected graphs of services.

The environment must select the best action as answer
to a user intention with respect of the constraints of the
whole system. To describe a user intention, we introduce
the concept of a partial action, that means a description of
the action containing (more or less) exactly defined the data
source and the data sink and maybe some steps between.
The PerseBase in charge has to derive a complete action
from this partial action and the knowledge it has about the
available services in the network. This process is sketched
in Fig. 1 and can be easily understood with the following
example:

A person enters a room and wants to display some pre-

sentation about his vacation from his personal notebook.

Today, he has to connect his computer to the local network

and copy the presentation-file to the local server connected

to the video projector, or he can deconnect the projector

from the local machine and connect it to his own mobile

computer, adjust the screen settings and so forth. A PERSE-

enabled, smart classroom, does not provide the ability to

deconnect the local projector cable or to access the room

server, because these entities are “invisibly” embedded into

the room arrangement. Instead, the user expresses his de-

sire by saying or typing “Show the sunrise presentation on

the projector”. His notebook, which communicates with the

local resources via Bluetooth or WLAN, interprets the user

command as a partial action. Using the information about

the local available services, context information and the ac-

tion history, the PerseBase constructs a graph of all possible

(and reasonable) service combinations, each representing

a complete action matching the given partial action. From

these combinations, an algorithm (see Sect. 4.1) selects the

“best” one depending on a given cost-function, e. g. the vol-

ume of transferred data. Finally, this complete action is ex-

ecuted: the presentation is displayed on the projector.

3 Modeling User Intention - PsaQL

When someone wants to use a computing system, most
of the time he has a very concrete idea of what he wants
to do, even if he does not exactly know how to do it. The
action which the system should execute seems very clear
for him. Unfortunately, this action is not complete that is it
lacks some information to be executable.

It is the challenge for the embedded user-intention-
interpretation algorithm to create, based on this little infor-
mation from the user, a complete action which suits best the
user intention, maximizing his level of satisfaction with the
system. We introduced in [1] a formal language to express
partial actions in a system-independent and intuitive way:
PsaQL (Pervasive Service Action Query Language). PsaQL
plays a similar role in the PERSE-enabled pervasive envi-
ronment as SQL [3] does for accessing relational database
management systems. Therefore, PsaQL looks similar to
SQL at the first glance.

Our example (see Sect. 2), expressed in PsaQL:

USE sunrise.ppt
ON BASE notebook

WITH SERVICE projector

In this case the user already has the knowledge, that
his presentation is stored in a file named “sunrise.ppt” on
his computer accessible as “notebook”, and that the video
projector is named “projector”. If the user is not sure
about these parameters, his request could use the “LIKE”-
statement (currently treated as regular expression):

Based on this description of a partial action, an ac-
tion graph of all possible solutions is created and fi-
nally, a complete action is selected (see Fig. 1), which
can be executed by the pervasive environment. A pro-
totype to demonstrate the process of creating a com-
plete action based on a partial action can be found at
http://liris.wh4f.de/perse.

- 176 -- 176 -- 175 - - 175 - - 175 -0000000000- 175 - - 175 - - 176 - - 177 - - 177 - - 178 - - 178 - - 178 - - 178 - - 178 - - 178 - - 178 - - 178 - - 178 - - 178 - - 184 - - 184 -

4 From User Intention to User Satisfaction

4.1 Translating a Partial Action into a Complete
Action

We present in this section an algorithm to translate a par-
tial action into a complete action (see Fig. 1). The main
ideas of the mathematical formalization are provided here:2

Definition 1 (Partial Action) Let B be the set of bases,

S the set of services and S(b) the set of available services

on a base b, where S(b) is equal to S when b =⊥.3 A partial
action p, the formal expression of a user intention, can be

modeled as a list of 2-tuples:

p = (e1, · · · , en) | ei = (bi, si) with

bi ∈ {⊥} ∪B; si ∈ {⊥} ∪ S(bi)
∀i : (bi �=⊥) ∨ (si �=⊥)

(1)

Definition 2 (Service Graph) Let E = {ε = (b, s) | b ∈
B, s ∈ S(b)} be the set of all available services in a perva-

sive service environment and I(E) ⊆ E × E the set of all

possible service interactions within this environment.4 Then

we can define a service graph in a part E of the pervasive

service environment as

GE = (E , I); E ⊆ E; I ⊆ I(E) (2)

The set ΓE of all valid service graphs in E is defined as:

ΓE = {(E , I) | (E ⊆ E, I ⊆ I(E))} (3)

Definition 3 (Connected Service Graph) A service graph

g = (E , I); I ⊆ I(E) is called connected iff

∀ε0, εn ∈ E , ε0 �= εn : (ε0, εn) ∈ I ∨
(∃ε1, . . . , εn−1 : (εi, εi+1) ∈ I; (i = 0, 1, . . . , n− 1))

(4)

Definition 4 (Solution) A graph gE
p = (E , I); E ⊆

E, I ⊆ I(E) is called solution for a given partial action

p in a pervasive service environment E iff

gE
p ∈ ΓE (5)

gE
p is connected (6)

∀e = (b, s) ∈ p ∃ε = (β, σ) ∈ E with
⎧

⎪

⎨

⎪

⎩

β = b if s =⊥,

σ = s if b =⊥,

(β = b) ∧ (σ = s) otherwise.

(7)

2To simplify the model, we do not consider attributes in the following
section, they can be easily added lately.

3⊥ represents “undefined”.
4The interoperability between services is not studied here.

We assume that (ε1, ε2) ∈ I(E) ⇔ ((ε1, ε2) ∈ E × E) ∧ (ε1 is inter-
operable with ε2).

Definition 5 (Action Graph) Let SE
p be the set of all solu-

tions for p in a pervasive service environment E. An action
graph AE

p ∈ ΓE of a partial action p in the pervasive ser-

vice environment E is a connected service graph containing

all solutions for p:5

AE
p = (

⋃

(E,I)∈SE
p

E ,
⋃

(E,I)∈SE
p

I) (8)

Definition 6 (Complete Action) Let C(g, γ) be the func-

tion calculating the cost of a solution g when it is executed

in a context γ. Then the complete action cE
p for a given

partial action p in a service environment E is defined as:

C(cE
p , γ) = min{C(gE

p , γ) | gE
p ∈ SE

p } (9)

Let H(p, E, γ) be the function fetching from the execu-
tion history the complete action for a given partial action p
and a pervasive service environment E in a context γ. Then,
with these definitions and declarations, we proposed in [1]
an algorithm using an heuristic approach to solve the trans-
lation in polynomial time. To receive stable benchmark re-
sults, we designed a second, exhaustive algorithm (Algo-
rithm 1), transforming a user intention p into a complete
action cE

p .6 Starting with an action graph (representing a
solution for p), this algorithm removes step by step the con-
nections (see line 11 of algorithm 1). When a service graph
derived by this has no longer any successors which are solu-
tions (line 16), this service graph is a possible candidate for
the complete action (line 17). The candidate with the mini-
mal glolbal cost is selected as solution of the algorithm.

The complexity of this algorithm is exponential, but it
finds always the optimal action for a given partial action.
For small pervasive service environments (small number of
bases and services), this algorithm calculates in a reason-
able time the best possible complete action for a given par-
tial action.

4.2 Complete Action Representation

To represent the action graph and a complete action, we
need a suitable data structure. Each used service is con-
nected with other services, therefore we model the action
graph as well as its thinned out version, the complete action,
as a set of channels, connecting output- and input-ports of
the participating services.

5In some rare cases (when ∀(b, s) ∈ p : b =⊥) it can happen, that
AE

p is not unique. If so, algorithm 1 (see below) has to be executed for
each (AE

p)i.
6AE

p can be directly derived from (E, I(E)).

- 177 -- 177 -- 176 - - 176 - - 176 -0000000000- 176 - - 176 - - 177 - - 178 - - 178 - - 179 - - 179 - - 179 - - 179 - - 179 - - 179 - - 179 - - 179 - - 179 - - 179 - - 185 - - 185 -

Algorithm 1 Exhaustive Translation Algorithm
1: c = H(p, E, γ) // try to find a solution in history

2: if c �=⊥
3: cE

p = c
4: else
5: fifo A, fifo S
6: push(A,AE

p)
7: while A �=⊥
8: (E , I) = g = shift(A) // take a service graph from the

beginning of the list

9: is leaf = true
10: for each ι ∈ I
11: I′ = I – {ι} // remove connection ι from I
12: E ′ =

S

(ε1,ε2)∈I′
{(ε1, ε2)} // keep connected elements

13: if g′ = (E ′, I′) is solution for p
14: push(A,g′) // remember this successor

15: is leaf = false
16: if is leaf
17: push(S,g) // g is a solution candidate

18: g = shift(S)
19: for each g′ ∈ S // find minimal solution

20: if C(g′, γ) < C(g, γ)
21: g = g′

22: cE
p = g

To describe a complete action, we use the object model
sketched in Fig. 2. The utilized classes are:

• Address - Combination of a type (e. g. "ipv4") and a
valid address-string (e. g. "172.20.0.9:8080")

• Base - Represents a PerseBase, has one or more Ad-

dresses and manages Services

• Service - A service published on a Base proposing
Ports for data input and output

• Port - Representation for data-flow input and output
of a Service. Contains information about the type of
data-flows accepted/produced and the direction of the
data-flow (in/out)

• Element - Combination of a Service with adaptation
information (Attributes)

• Attribute - A string transmitted to a service to adapt it
to the specific needs of a PERSE-action

• Stub - Combination of an Element with a service-Port

• Channel - The two Stubs forming a data-flow between
two services

• Action - A collection of Channels

ActionAction

ChannelChannel

StubStub

ElementElement

AttributeAttribute

PortPort

ServiceService

BaseBase AddressAddress

1

1..*

1

2

0..* 0..*

1

1

1..*

1

0..* 1

0..* 1

0..*

1
0..* 1..*

Figure 2. Class diagram for the internal repre-
sentation of action graphs and complete ac-
tions.

5 Implementation and Evaluation Issues

5.1 Service Description Management

The objects which form an action graph are created
based on a database connected to the system performing the
translation process.7 This database contains descriptions of
available PerseBases, services and the description of these
services. Where such a database initially just contains in-
formation about local available services, each PerseBase
supports a HTTP-based interface to access this information.
We have designed a PerseBase-API supporting the follow-
ing requests:

• allObjects – Returns a list of all known neighbor-bases
(including the requested PerseBase itself) as well as
their connection information (IP-address for instance)
and other meta-data

• services – Returns a list of local available services ac-
companied with meta data like name, keywords etc.

• serviceDescription – Returns a detailed description of
a given service containing information about ports,
treatable data types and so on

The results of this interface requests are transmitted us-
ing specific XML schemas. The interoperability of services
is determined using the accepted data types infor-
mation of a service description.

7Normally, this will be a PerseBase

- 178 -- 178 -- 177 - - 177 - - 177 -0000000000- 177 - - 177 - - 178 - - 179 - - 179 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 180 - - 186 - - 186 -

5.2 Evaluation Metrics

In summary the following domains for measuring algo-
rithms translating a user intention into a complete action
have been identified in [1]:

• User satisfaction as the most important goal of algo-
rithm design in a pervasive environment.

• Execution time as the factor having the biggest impact
on the user satisfaction.

• Network data transmission as having an important im-
pact on the execution time. Beside the network speed

which cannot be influenced by the design of the trans-
lating algorithm, the size of the transferred service de-

scriptions and the transmission distance constitute this
value.

• Scalability of the algorithm when increasing the num-

ber of available services or the length of the query (see
chapter 5.3).

• Pervasive Computing Constraints as an accountable

usage of CPU and memory resources.

5.3 Benchmark Results

To test our prototype implementation of a simple trans-
forming algorithm, we evaluated the volume of the trans-
ferred data when varying the number of available Perse-
Bases from 10 to 1000 in steps of 10 bases. To examine the
scalability of the solution, we introduced a scalability factor

which calculates the average distance covered by transmit-
ted data:

fscal =

∑

msg size(msg) ∗ distance(msg)
∑

msg size(msg)

A first implementation (“Algorithm A”) fetches the total
available service description at the beginning and performs
the creation of a complete action on base of these descrip-
tions. This implementation corresponds in its benchmark
results to the exhaustive algorithm presented in section 4.1.
In a second implementation (“Algorithm B”) we have tried
to minimize the amount of transferred data. To reach this
goal, we introduced some constraints for the implementa-
tion of this prototype. The selection of the complete action
from the action graph is done on-the-fly and the implemen-
tation fetches at the same time the service descriptions from
the network, just until the algorithm found a solution. An-
other restriction of this second implementation is the com-
position of services by linear concatenation.

The test environments have been created with a uniform
distribution of n PerseBases in a region of fixed size. The

Figure 3. The progression of the scalability
factor as introduced in the text when varying
the testbed size.

connecting network has been created using the PLNGen al-
gorithm, developed for this testcase and modeling perva-
sive networks8. The connections between the simulated
bases try to model a heterogeneous pervasive network with
short distance and long distance connections. We analyzed
queries of the type “USE BASE x WITH BASE y...”
with a length varying from two to ten enchained entities.

The results of our first test runs (see Fig. 3) show that
the currently implemented algorithm reacts very sensitively
to an increasing of the number of available PerseBases. It
is at most the aspect of the increasing distance between the
requesting and the service-providing PerseBase raising the
value exponentially.

6 Related Work

The idea to execute pervasive applications in a “user-
aware” way has been worked out for instance in [13]. Simi-
lar as PERSE does, El-Kathib et al. design in [4] a platform
trying to maximize user satisfaction while adapting the con-
tent of multimedia data with a dynamically estimated path
of enchained transcoders. His solution also relies on graph
base composition, where he does not present a formal lan-
guage to define the adaptation requests.

Other user-oriented systems for managing pervasive en-
vironments have been developed, for instance Gaia [12] or
Aura [5]. Gaia proposes a programming language to con-
struct executable tasks based on the interoperability of ser-
vices, whereas Aura tries to avoid any interaction with the
user and does not present a model for user intention.

The Ninja Environment [6] introduced the idea of com-
posing services on distributed adaptation paths, whereas [2]
added path optimization considerations for content adapta-
tion. In [15], M. Valle et al. introduce a system for dy-

8see http://liris.wh4f.de/pln gen algo.html

- 179 -- 179 -- 178 - - 178 - - 178 -0000000000- 178 - - 178 - - 179 - - 180 - - 180 - - 181 - - 181 - - 181 - - 181 - - 181 - - 181 - - 181 - - 181 - - 181 - - 181 - - 187 - - 187 -

namic service composition in intelligent environments: they
are following a related way as PERSE does, from a partial
action (what they call abstract plan) through a composi-
tion algorithm to a concrete action, in their words detailed

plan. They have worked out well the mechanisms for ser-
vice descriptions and service composition, while they do
not present a formal way to express intuitive and computer-
interpretable user intention in form of a partial action. They
rely on there part on a library of predefined abstract plans,
which can be interpreted as a kind of predefined execution
history, but this history is not taken directly into account
when composing services.

Another widely explored field of research inspiring the
development of this work are Semantic Web Services, as
presented for instance by [9]. Ontologies as defined by
OWL-S [8] can help to create correspondent and valid ac-
tion graphs and maximize the user satisfaction with a calcu-
lated solution. Semantic composition of Web Services is as
well introduced by [14] among others.

A pervasive environment will be characterized by the
availability of application context information [7]. PERSE
will use the contextual information to build an appropriate
action graph and to select the best solution as complete ac-
tion. Earlier approaches introducing context based adaption
into pervasive environments are presented in [11] and [10].

7 Conclusion and Open Issues

This paper has presented a strategy and a methodology
to take the user intention into account when composing
service-based actions in a pervasive service environment.
We outlined an exhaustive algorithm extending this partial
action to an executable graph of services (complete action)
using the service descriptions, the context information and
the execution history.

We presented an object-oriented model of complete ac-
tions. Finally, some metrics supposed to model the user sat-
isfaction and environment scalability has been worked out
and performance tests have been applied to a prototype im-
plementation.

In future, the implemented algorithm will be further de-
veloped to take the execution history into account. This
is intended to lower significantly the execution time of the
translation algorithm, as the typical actions in a pervasive
service environment are frequently reexecuted. We estimate
that about 90 % of the actions can completely or partially
base on already executed actions stored in the history, and
just a small amount of 10 % has to be completely new calcu-
lated. As well, security will be important in further PERSE-
development. The current presumption that all services can
be used by everyone cannot be hold in real world applica-
tion, a system of authentication and authorization based on
roles and access control lists will be implemented.

References

[1] P. Bihler, L. Brunie, and V.-M. Scuturici. Modeling user
intention in pervasive service environments. In Proceedings

of the IFIP-EUC’2005, (to appear) 2005.
[2] S. Buchholz and T. Buchholz. Adaptive content network-

ing. In ISICT ’03: Proceedings of the 1st international sym-

posium on Information and communication technologies,
pages 213–219. Trinity College Dublin, 2003.

[3] C. J. Date. A guide to the SQL standard. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA, 1986.

[4] K. El-Khatib, G. v. Bochmann, and A. E. Saddik. A qos-
based framework for distributed content adaptation. In
Quality of Service in Heterogeneous Wired/Wireless Net-

works, QSHINE 2004, pages 308–312, 18-20 Oct. 2004.
[5] D. Garlan, D. Siewiorek, A. Smailagic, and P. Steenkiste.

Project aura: Toward distraction-free pervasive computing.
IEEE Pervasive Computing, 1(2):22–31, 2002.

[6] S. D. Gribble, M. Welsh, R. von Behren, E. A. Brewer,
D. Culler, N. Borisov, S. Czerwinski, R. Gummadi, J. Hill,
A. Joseph, R. H. Katz, Z. M. Mao, S. Ross, B. Zhao, and
R. C. Holte. The ninja architecture for robust internet-scale
systems and services. Computer Networks, 35(4):473–497,
March 2001.

[7] J. Ma, L. T. Yang, B. O. Apduhan, R. Hunag, L. Barolli,
and M. Takizawa. Towards a smart world and ubiquitous in-
telligence: A walktrough from smart things to smart hyper-
spaces and ubickids. In International Journal of Pervasive

Computing and Communications, volume 1, pages 53–68.
Troubador Publishing Ltd., March 2005.

[8] D. L. McGuinness and F. van Harmelen. OWL
Web Ontology Language Overview. online:
http://www.w3.org/TR/2004/REC-owl-features-20040210/,
2004.

[9] S. A. McIlraith, T. C. Son, and H. Zeng. Semantic web ser-
vices. IEEE Intelligent Systems, 16(2):46–53, March 2001.

[10] S. K. Mostéfaoui. A Context-Based Services and Discovery
and Composition Framework for Wireless Environments. In
Proc. of the 3rd IASTED International Conference on Wire-

less and Optical Communications (WOC’2003), pages 637–
642, Banff, Canada, 14-16 July 2003.

[11] A. Ranganathan and R. H. Campbell. An infrastructure for
context-awareness based on first order logic. Personal and

Ubiquitous Computing, 7(6):353–364, December 2003.
[12] M. Román, C. Hess, R. Cerqueira, A. Ranganat, R. H.

Campbell, and K. Nahrstedt. Gaia: A middleware infras-
tructure to enable active spaces. IEEE Pervasive Computing,
pages 74–83, Oct-Dec 2002.

[13] J. P. Sousa and D. Garlan. Improving user-awareness by fac-
toring it out of applications. In UbiSys’03 - System Support

for Ubiquitous Comp. Workshop, October 12 2003.
[14] S. Staab, W. M. P. van der Aalst, V. R. Benjamins, A. P.

Sheth, J. A. Miller, C. Bussler, A. Maedche, D. Fensel, and
D. Gannon. Web services: Been there, done that? IEEE

Intelligent Systems, 18(1):72–85, 2003.
[15] M. Vallée, F. Ramparany, and L. Vercouter. Composition

flexible de services d’objets communicants. In UBIMOB 05,
Mai 31 - June 3 2005.

- 180 -- 180 -- 179 - - 179 - - 179 -0000000000- 179 - - 179 - - 180 - - 181 - - 181 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 182 - - 188 - - 188 -

