
Predicting Vertebrate Promoters with Homogeneous Cluster

Computing

Fang-Yie Leu, Neng-Wen Lo*, Lun-Ni Yang

Department of Computer Science and Information Engineering and *Department of Animal

Science and Biotechnology, Tung-Hai University, Taiwan

leufy@thu.edu.tw , nlo@thu.edu.tw , g922810@thu.edu.tw

Abstract

This article proposes a system, named Vertebrate

Promoter Prediction System (VPPS), which employs a

new approach to predict vertebrate promoters using

statistical techniques. We analyze a putative promoter

sequence by investigating the presence of short

promoter-specific sequences and known transcription

factor binding sites. A gene-based consensus sequence-

extracting program (GCSEP) is developed to extract

promoter and non-promoter specific patterns, 6-20 bps

in length. Applying a weighed-matrix, we can more

easily manipulate the extracted patterns and accurately

predict whether and where an unknown DNA sequence

contains promoters. Furthermore, cluster computing is

deployed to accelerate the weighed-matrix

manipulation and K-gram parse. Our experimental

results show that the VPPS has better true positive and

lower false positive rates than other prediction tools.

1 Introduction

A promoter is a deoxyribonucleic acid (DNA)

sequence locating on the upstream of a transcriptional

starting site (TSS). Fig.1 shows the location of a

promoter and how a simple gene is transcribed from

DNA to mRNA. Presently certain intrinsic features

embedded in a promoter, e.g., TATA BOX, CCAAT

BOX and CpG islands, have been identified.
Transcription Start Site

TATA BOX

Transcriptional Termination Site

CCAAT BOX

exon intron intron exonexon

Transcription

Translation

DNA

mRNA

Protein

Promoter

Upstream of TSS

Fig. 1 A schematic diagram representing how a gene is

transcribed and translated

Promoter region, or simply promoter, is responsible

for initiating gene transcription. As Human Genome

Project’s (HGP) first phase ends, deciphering the

characteristics of a gene promoter has become one of

the key research tasks. Once the common hallmarks of

promoter sequences are characterized, molecular

biologists will be able to gain insights into the function

of a gene and realize how the gene is expressed in

terms of its specificity and intensity.

In this article, we propose a system, named

Vertebrate Promoter Prediction System (VPPS), which

employs a statistics-based new approach to predict

promoter regions within a given unknown DNA

sequence. VPPS first extracts vertebrate promoter and

non-promoter sequences from EPD (eukaryote

promoter database) [5] and NCBI (National Center for

Biotechnology Information) GenBank[8], respectively,

and partitions them into fixed length of segments, 6-20

bps, in order to identify the possible transcription

factor binding sites (TFBSs), which are sequence

segments segmented from promoters, and non-

transcription factor binding sites (NTFBSs), which are

also segments but segmented from non-promoters, both

of which are stored in Total Transcription Factor

Database (TTFDB), a database holding total TFBSs

and NTFBSs. Non-promoters may be RNAs or genome

sequences. TFBSs and NTFBSs are used to rank an

unknown sequence S. VPPS finally predicts if S

contains promoters or not by comparing it against

TTFDB. When a promoter is discovered, like other

research projects, we assume that an anticipated gene

would likewise exist downstream of the promoter.

2 Related work

Pedersen et al. [4] and Werner [7] provided a

detailed survey, from biological viewpoint, on the

fundamental structure of a promoter and eukaryotic

promoter prediction. Pedersen also brought up the idea

that identifying the presence of some characteristics,

e.g., TATA box and CpG islands, is helpful in

predicting a promoter. Werner thought that both of

promoters and non-promoters as well as exon and

intron should be analyzed. Fickett et al. [1] and Ohler

2-9525435-0 © IEEE SITIS 2005 - 137 - - 143 - - 143 -

et al. [3] reviewed promoter prediction researches, all

from biological and computational prediction

viewpoints.

3 Architecture of VPPS

VPPS consists of two subsystems, Transcription

Factor Finder (TFF) and Promoter Positioner (PP) as

shown in Fig. 2. The former is responsible for

generating TFBSs and NTFBSs by invoking our

developed Gene-based consensus sequence-extracting

program (GCSEP). The latter predicts if a sequence is

a promoter or non-promoter.

Promoter

Positioner

Transcription Factor Finder

Vertebrate promoter

sequences

Vertebrate

non_promoter sequences

Vertebrate promoter

signal files, 6-20 base

pair

Vertebrate

non_promoter signal

files, 6-20 base pair

signal scan signal scan

Unknown

sequence, X

Total Transaction

Factor

DB(TTFDB)

computing score weight matrix

for X

decide

X
Promoter

prediction
Non-promoter

prediction

promoter Non-promoter

Fig. 2 System architecture of VPPS and its processing flow

TFBSs, the basic units extracted from promoters,

are formally defined as the minimal complement of

proteins necessary to reconstitute accurate

transcription from a minimal promoter (such as a

TATA element or initiator sequence)[9].

Like N-gram, a promoter or non-promoter with n

bps in length in this research is segmented along its

sequence into n-K+1 K-bps patterns, named K-grams,

K=6,7,8,…,20. Those segmented from promoters are

TFBSs, and those from non-promoters are NTFBSs . A

TFBS (NTFBS) type K-gram is scored as it is

generated from training promoters (non-promoters).

However, the score of a NTFBS type K-gram is

negative. Let P = {TFBS1, TFBS2,…,TFBSq}, P’s

scores are Sp = {SC1, SC2, …, SCq}, SCi >0,

i=1,2,…,q. N = {NTFBS1, NTFBS2,…,NTFBSm}, N’s

scores are SN = {SCN1, SCN2, …, SCNm}, SCNj <0, j

= 1, 2,…,m. If a pattern, say PT, appears in both P and

N, say TFBSi and NTFBSj respectively, then SCi = SCi

+ SCNj and N = N-{NTFBSj}. While a pattern appears

either in P or in N but not both, its score does not

change. We merge P and N and sort the result based

on lexicographic order. Finally, all PTs of which

score=0 are deleted and the remainders are stored in

TTFDB[6].

Actually, TTFDB’s pattern scores can be generated

by three ways.

(1). For any K, K=6,7,8…,20, we can generate 4
K

patterns, each sequentially compares with K-

grams which are dynamically extracted from

training promoters and non-promoters. If there

are a total of T training sequences and each is L

in length, the segmentation effort (times) is
20

6

(4 * *(1))K

K

T L K
=

− +∑ ……(1)

The search effort is
20

2

6

4 (log | |)K

K

TFDB
=

∑ ……(2)

(2). We segment each training sequences of length L

into L-K+1 patterns, each compares with 4K

patterns previously generated by means of binary

search. The segmentation effort is
20

6

*(1)
K

T L K
=

− +∑ ……(3)

The search effort is
20

6

*(1)*2
K

T L K K
=

− +∑ ……(4)

(3). VPPS segments each training sequence of length

L into L-K+1 patterns, and accumulates the times

a pattern is generated. The segmentation effort is
20

6

*(1)
K

T L K
=

− +∑ ……(5)

The search effort is
20

2

6

log (*(1) / 2)
K

T L K
=

− +∑ ……(6)

3.1 Transcription Factor Finder (TFF)

Site 0

TTF

Controller

TTFDB

Site 1

Non_pro

moter

TTF1

Signal Scan TFDB 1

Promoter

Site N-1

Non_pro

moter

TTF N-1

Signal Scan TFDB N-1

Promoter
Non_prom

oter

TTF 0

Signal Scan TFDB 0

Promoter

TTFDB TTFDB

control

Fig. 3 Transcription Factor Finder architecture

TFF employs a cluster system of N sites shown in

Fig.3 to speedup data processing. The tasks of

generating TFBSs and NTFBSs are distributed to

- 144 - - 144 -

cluster nodes, therefore, each has its locally generated

result. All the results should come together before PP

can position possible promoters. Algorithm 1 shows

the control function deployed to estimate distribution

and balance processing loads. GCSEP is implemented

by algorithm 2 and 3.

Algorithm1: TFF∅ Controller /*Performed by site0.

Input: Number of training sequences, say

M=|P|+|NP|, and number of cluster sites, say N,

where P and NP are sets of promoters and

non-promoters.

Output: Training sequences distributed to cluster

sites.

Method: Based on sitei’s performance
iPc [2] to

allocate sequences TSi to sitei, |TSi|=

1

0

*i

N

j

j

Pc
M

Pc
−

=

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥
∑

, i=0,1,2,…N-1……(7)

Algorithm2: TFFi Signal Scan /*performed by sitei,

i=0,1,2,…,N-1.

Input: TSi, consisting of Pi and NPi.

Output: TFDBi and scorei[].

Method:

1. For each promoter
iP∈ , say Ps of length Ls

Partition Ps into (Ls-k+1) K-grams, k=6,7,…,20;

save them in Pk.

/*Assuming there are a total of q K-grams,
20

6

(1)
s

Ps k

q L k
∀ =

≤ − +∑∑
2. Calculate the scores for the q K-grams to obtain

scorei[].

3. For each non-promoter
i

NP∈ , say Pt of length Lt

Partition Pt into (Lt-k+1) K-grams, k=6,7,…,20;

save them in NPk.

/*Assuming there are a total of r K-grams,
20

6

(1)
t

Pt k

r L k
∀ =

≤ − +∑∑
4. Calculate the scores for the r K-grams to obtain

score1i[].

5. For each K-gram, say KG, appearing both in Pk

and NPk

{scorei[KG]=scorei[KG]+score1i[KG] ; delete

KG from NP} /*score1i[KG]<0

6. Merge (Pk, scprei[]) and (NPk, score1i[]); sort the

result based on lexicographic order; save the

sorted result in TFDBi.

7. Except site0, send (TFDBi , scorei[]) to site0.

Algorithm3: Merge all TFDBi into TTFDB.

/*performed by site0

Input: TFDBi, i=0,1,2,…N-1.

Output: TTFDB and the score table for K-grams in

TTFDB, say scoreT[].

Method:

1. Merge all TFDBi to form TTFDB by using

multiway merging algorithm and
1

0

[] []
N

i

i

scoreT X score X
−

=

= ∑ , where X is a K-gram

and scorei[X]=0 if X does not exist in TFDBi.

2. Duplicate TTFDB and scoreT[] to sitei,

i=1,2,…N-1.

3.2 Promoter Positioner(PP)

Site N-1

PP

Signal Scan TTFDB

Score

matrix

Site 0

Site 1

PP

Signal Scan TTFDB

PP Controller

PP Identification

Function

Sequence & Control signal

Unknow

Sequence

Output

Score

matrix

PP

Signal Scan TTFDB

Score

matrix

Fig. 4 PP’s architecture

PP is also implemented by cluster system as shown

in Fig.4. The Signal Scan partitions an unknown input

sequence U of length L’ into N segments as balanced

as possible according to node performance, i.e., a

longer segment is distributed to a higher performance

node. U is virtually partitioned into units, each is 100

bps in length, and a segment, say i, of Ci+1 units

starting from the
1

0

()
i

th

j

j

C
−

=
∑ to

0

(() 1)
i

th

j

j

C
=

+∑ unit is

distributed to sitei where Ci=
1

0

'
*

100

i

N

i

i

PcL

Pc
−

=

⎡ ⎤
⎢ ⎥⎡ ⎤⎢ ⎥⎢ ⎥⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥

∑
. Sitei

picks up segment i which overlaps 100 bps with

segment i+1 as the test data. Sitei partitions segment i

into K-grams and generates a score matrix SMi[][]

with algorithm4:

Algorithm4: Generating a score matrix /* performed

by sitei

Input: segment i, TTFDB.

Output: SMi[][].

Method:

1. Generate a score matrix SMi[6 to 21][0 to M+

99], where M= Ci*100 and the initial value of

each element is 0.

- 145 - - 145 -

2. For K=6 to 20

{Partition segment i, along its sequence, into K-

grams.

For each K-gram, says KG, if KG ∈ TTFDB,

give KG’s score to corresponding SM entry i.e.,

SMi[K][q] = score[KG], where q is the q th bp

of segment i.}

3. Send SMi[][] to site0.

Site0 collects SMi[][], i=0,1,2,…N-1 , appends

SMi+1[][] to SMi[][] to form a complete score matrix

SM as shown in Fig.5 and sums up score for each

column t from SM[6][t] to SM[20][t] as a subtotal

which is then stored in SM[21][t], 0 ≤ t ≤ L’-1. Next,

SM[21][] is partitioned into P= '/100L⎢ ⎥⎣ ⎦ units, named

l-unit (long unit), each is 200 bps in length starting

from SM[21][x] to SM[21][x+199], where x=100*r,

r=0,1,2…,P-1, i.e., l-unit i overlaps l-unit i+1 100 bps

and the last q bps, only appears in the final unit

beginning at 100*(P-1). Finally, 200 subtotals in each

l-unit X are summed up as a score which is then stored

in the Xth entry, US[X], of an array US[0 to P-1]. We

discover that every pattern meets the situation US[s]>0,

US[s+1]<0 and US[s+2]<0, US[s]’s corresponding

subsequence (200 bps) possibly contains a promoter or

a part of a promoter (a binding site). The processing

details are described in Algorithm5.

c a t c a t c g

1 1 1

1 1

0

1 2 2

a t t c c t c g t c

1

1

1

1

0

0

9

1 1 -1 -1 -1 1 -1 -1 -1

1 1 1 -1 -1 -1 -1 -1 -1

1 1 1 -1 -1 -1 -1 -1 -1

1 1 0 -1 -1 1 -1 -1 -1

1 0 0 1 -1 1 1 0 1

0 0 0 0 0 -1 -1 0 -1

14 11 4 -5 -8 -6 -7 -9 -3

g c a c t t

1 1 1 1 -1 -1

-1 -1 1 1 1 -1

1 1 -1 1 1 1

1 1 -1 1 0 1

1 1 1 1 0 -1

0 0 1 0 0 0

6 4 6 8 3 -5

sequence

Segment 6bp

Segment 7bp

Segment 8bp

Segment 9bp

Segment 19bp

Segment 20bp

SCORE

1 2 3 4 5 6 7 8 100999897969594 101 102 103 119 120 121 122 123 124

Fig. 5 A sample of SM[][] representing the segment is

CATCATCG…ATTCC…

Algorithm5: Processing SMi /* performed by site0

Input: SMi[][], i=0,1,2…,N-1.

Output: Possible promoter regions (PPR).

Method:

1. Append SMi+1[][] to SMi[][] to form SM[][] and

PPR=∅ .

2. Calculate subtotal for each column of SM[][].

3. Sequentially segment SM[21][] into '/100L⎢ ⎥⎣ ⎦ l-

units, each is 200 bps in length and overlaps its

next unit 100 bps.

4. For each l-unitX, calculate US[X], X=0,1,2,..,P-1.

5. For each (US[s]>0 and (US[s+1]<0 and

US[s+2]<0)), 0 3s P≤ ≤ −
PPR=PPR ∪ {US[s]’s corresponding l-unit} as the

possible promoter regions according to our previous

assumption.

4 Experiments and Simulation

There are 2541 vertebrate promoters in the EPD

Release 80. Some of them marked by “N” involve

unknown nucleic acid. VPPS excludes those with “N”.

Therefore, only 2237 remain. We choose 2,000 and

pick up 550 bps, including TSS’s 500 upstream bps

and 50 downstream bps both beginning their counting

at TSS, from each. We also select 2,000 non-promoters

from the GenBank, from each 550 bps are also

extracted, from the same positions as those of

promoters. The remaining 237 promoters and other

2000 non-promoters are extracted from the GenBank

as the test data.

Two kinds of scoring methods are used. The first is

counting the times a K-gram KG appears in test

sequence. If KG appears in TTFDB and score[KG]>0,

add score_TFBS[KG] by one. If score [KG]<0, reduce

score_TFBS[KG] by one. The second method is based

on score_TFBS[KG] = score_TFBS[KG] + score[KG]

instead of increasing/decreasing by one. Each

experiment is performed five times, each time different

2000 non-promoters for training and different 2000 for

test are involved, and each time different 237

promoters are selected as the test set, the remaining

2000 are training set due to no more promoters. Each

listed score is the average of its five independent test

results. SET1 is obtained by using the second scoring

method, while SET2 is generated by invoking the first.

SET3 is the same as SET1, but only TFBSs/NTFBSs

with scores within top 5% and bottom 5% rather than

all TFBSs/NTFBSs are compared. SET4 is the same as

SET2, however the TFBSs/NTFBSs compared are also

those within top 5% and bottom 5%. Fig. 6 shows

VPPS’s true positives.

Since the experimental result of top (bottom) 5% is

similar to that of top (bottom) 10% (only 0.3%

difference) and the computation complexity of the

former is one half of the latter, VPPS adopts top

(bottom) 5%.

55

70

85

100

Training set

(Promoter)

Training set (Non-

Promoter)

Test set (Promoter) Test set (non-

Promoter)

Total

T
ru

e
P

os
it

iv
e

Total Score

Total Count

10% SCORE

10% COUNT

5% SCORE

5% COUNT

1% SCORE

1% COUNT

Fig. 6 True positives (TPs) of VPPS’s experimental results

From Table 1, we can deduce two conclusions. First,

the result obtained by accumulating scores has better

performance than frequency. For example, in SET3,

 - 140 - - 146 - - 146 -

the accuracies of training sets regarding promoter and non-

Table 1 The results of different training and test data sets
Number of

sequence

AVG true

positive

Accuracy Standard

Deviation

AVG true

positive

Accuracy Standard

Deviation

SET1 (score,all):Training set SET3 (score,5%):Training set

Promoter 2000 1705 0.853 0.038 1671 0.835 0.084

Non-promoter 2000 1972 0.986 0.005 1894 0.946 0.044

Test set Test set

Promoter 237 189 0.797 0.043 186 0.785 0.096

Non-promoter 2000 1874 0.937 0.024 1757 0.879 0.041

SET2 (freq.,all):Training set SET4 (freq.,5%):Training set

Promoter 2000 1644 0.822 0.013 1724 0.862 0.039

Non-promoter 2000 1750 0.875 0.015 1538 0.769 0.081

Test set Test set

Promoter 237 200 0.844 0.024 209 0.882 0.038

Non-promoter 2000 1652 0.826 0.039 1418 0.709 0.059

Table 2 performance comparison of relevant tools
Accuracy Training/Test set’s accuracy Total accuracy

Promoter 0.741(1482/2000)Training set

Non-promoter 0.561(1121/2000)

0.65

(2603/4000)

Promoter 0.679(161/237)

NNPP

Test set

Non-promoter 0.55(1099/2000)

0.563

(1260/2237)

0.619

(3864/6237)

Promoter 0.502(1002/1997)Training set

Non-promoter 0.948(1893/1996)

0.725

(2895/3993)

Promoter 0.5(118/236)

Promoter Scan

Test set

Non-promoter 0.955(1910/2000)

0.906

(2028/2236)

0.790

(4923/6229)

Promoter 0.195(389/2000)Training set

Non-promoter 0.831(1662/2000)

0.512

(2051/4000)

Promoter 0.191(46/237)

Promoter 2.0

Test set

Non-promoter 0.813(1626/2000)

0.747

(1672/2237)

0.589

(3678/6237)

Promoter 0.835(1671/2000)Training set

Non-promoter 0.946(1894/2000)

0.892

(3565/4000)

Promoter 0.785(186/237)

VPPS

Test set

Non-promoter 0.879(1757/2000)

0.868

(1943/2237)

0.883

(5508/6237)

promoter are 83.5% and 94.6% respectively. The

corresponding results in SET4 are only 86.2% and

76.9% respectively. The accuracy of SET3 is about

9.9% (=((1671+1894+186+1757)-

(1724+1538+209+1418)) /6237) better than that of

SET4. Second, using the top and bottom 5 %

TFBS/NTFBSs data is about 3.7%(=((5740-

5508)/6237)) less than using all TTFDB data, but the

processing efforts can be dramatically reduced since

the search space is only 5% of TTFDB. The total true

positives in SET1 are 1894 (1705+189) and 3846

(1972+1874), whereas those in SET3 are 1857

(1671+186) and 3651 (1894+1757). Also the lower

standard deviation represents our algorithms and

experiments are stable and reliable when different

training and testing data are in use. Table 2

summarizes the test results of some relevant tools

downloaded from the Internet, like NNPP, promoter

scan, and promoter 2.0. We can conclude that most

tools are better in predicting non-promoters. For

example, with Promoter Scan the training set

accuracies in predicting promoter and non-promoter

are 50.2% and 94.8% respectively. In Promoter 2.0,

the accuracies are 19.5% and 83.1% respectively.

VPPS’s are 83.5% and 94.6%. VPPS seems having

better total performance. Furthermore, high true

positive implies low false negative which means less

genes are lost. This occurrence is particularly valuable

in predicting promoters.

In cluster performance analysis, training data

include 2000 promoters and 2000 non-promoters, each

is 550 bps in length. A eight-site cluster computer is in

use. Each site is equipped with intel 2.8G CPU and

1.5G RAM. The results are shown in Fig. 7 depicting

that the performance is almost proportional to the

number of sites but with some level of overhead.

In sequence prediction, input sequences of 1000,

5000, 10000, 20000, and 40000 bps in length and the

eight-site cluster computer are involved. The results

are shown in Fig. 8. We found that a longer sequence

has a better performance due to less proportional

overhead. The phenomenon is stronger as more sites

are used.

 - 141 - - 141 - - 141 - - 141 - - 147 - - 147 -

Let S(n) =
Number of computational cost using one processor

Number of parallel computational cost with n processors

be the speedup by using n processors over using only

one processor. We can conclude from Fig. 9 that in

VPPS a longer sequence with more cluster sites will

result in better speedup.

0

2000

4000

6000

8000

10000

12000

14000

1 2 4 8

number of cluster sites

to
ta

l
co

st
(m

in
-s

ec
)

Fig. 7 training performance by using cluster computing

0

20

40

60

80

100

120

1 2 4 8

to
ta

l
co

st
(s

ec
)

1000

5000

10000

20000

40000

Fig. 8 recognition performance (sec)

0

2

4

6

8

10

1 2 4 8

Number of processors,n

sp
ee

d
u
p

Training performance

Seq length 1000

Seq length 5000

Seq length 10000

Seq length 20000

Seq length 40000

Fig. 9 Speedup against number of processors

5 Conclusion

In this article, we propose a system, VPPS, aiming

to recognize promoter within an anonymous

vertebrates DNA sequence. VPPS is general promoter

prediction tool suitable for predicting sequences of

different species, such as those of humans or mice. It

can be applied to recognize the difference between

intron sequences and promoter sequences that are

found to be interesting.

The experimental results show that the prediction

accuracies of VPPS have significantly improved when

comparing to other reported web-accessible promoter

recognition systems. VPPS is also able to more

accurately point out the position of a possible promoter

given a large anonymous DNA sequence, and to

predict more promoters. This occurrence can

significantly improve research result in investigating

gene behaviors and make gene hunting easier since

VPPS considerably reduces the possibility of false

positive and false negative as comparing to other

systems.

However, VPPS has its own bottleneck especially

in training phase. It spends most cost, almost 95%, to

parse K-grams and search database (TFDB and

TTFDB). We solve this problem by deploying cluster

computer to distribute and share workload. The

experimental results show that VPPS successfully

shortens prediction cost with the assist of cluster

computing.

Furthermore, we have never involved any well-

known promoter patterns, like TATA-box, Inr,

CCAAT-box and CpG islands. Only simple statistic

techniques are used. As those patterns are involved, its

predictive accuracy should be able to successfully

achieve to a higher step.

References

[1] Fickett, J.W. and Hatzigeorgiou A.G., “Eukaryotic

Promoter Recognition,” Genome Research, vol. 7, pp.

861-878, Sept. 1997.

[2] Leu. F.Y., Lin. J.C., Li. M.C. and Yang. C.T., “A

Performance-Based Grid Intrusion Detection System,”

Proceedings of the 29th Annual International Computer

Software and Applications Conference, pp.304-309,

March 2005.

[3] Ohler, U., Harbeck, S., and Niemann, H., et al.,

“Interpolated Markov Chains for Eukaryotic Promoter

Recognition,” Bioinformatics, Vol. 15, pp. 362-369, May

1999.

[4] Pedersen, A.G., Baldi, P., Chauvin, Y., and Brunak, S.,

“The Biology of Eukaryotic Promoter Prediction-a

Review,” Computers and Chemistry, vol. 23, pp. 191-

207, 1999.

[5] Périer, R.C., Junier, T., Bonnard, C., and Bucher, P.,

“The Eukaryotic Promoter Database EPD,” Nucleic

Acids Research, Vol. 26, pp. 353-357, Jan. 1998.

[6] Sudharshan Vazhkudai., “Enabling the Co-Allocation of

Grid Data Transfers’,” Proceeding of the Fourth

International Workshop on Grid Computing (Grid’03)

IEEE, pp.44-51, Nov. 2003.

[7] Werner, T., “Models for Prediction and Recognition of

Eukaryotic Promoters,” Mammalian Genome, vol. 10, pp.

168-175, 1999.

[8] NCBI-National Center for Biotechnology Information,

http://www.ncbi.nlm.nih.gov/.

[9] Expression, genes & more glossary

http://www.genomicglossaries.com/content/ex_bio.asp

 - 142 - - 142 - - 142 - - 142 - - 148 - - 148 -

