
A Language to Specify Mappings Between
Ontologies

François Scharffe, Jos de Bruijn
Digital Enterprise Research Institute

University of Innsbruck, Austria
Email: francois.scharffe@deri.org, jos.debruijn@deri.org

Abstract— The ontology mediation field aims at finding tech-
niques and frameworks to allow interoperability between overlap-
ping heterogeneous ontologies. One of the solutions is to designing
mappings that link the corresponding entities. Many systems and
algorithms have been built by different parties, but each system
represents the mappings in its own format. To allow reusability
of the mapping tools and of the results of the algorithms, we have
designed a language to express these mappings. In this paper, we
will present this mapping language.

I. INTRODUCTION

Ontologies are the most prominent solution to integrate
heterogeneous data sources. As structured objects they allow
for a formal description of a domain. A domain consists
of different data sources being linked to an ontology to
enable interoperability between them. A same domain may
be modelled differently depending on the contexts of use
and interest. Ontology mediation is the research topic that
aims to relate ontologies having an overlapping part to enable
interoperability between them. In this paper we describe
a language we have developed to express correspondences
between ontologies. Such correspondences are then accessible
in a mapping document which may be used to perform the
mediation tasks.

The recommended Ontology Web Language OWL [1] gives
a few constructs to express these mappings. These constructs
are included as part of the ontology and coupled with it. In our
approach we separate the mappings from the ontology. This
allows us to define different mappings that may be partial or
specific to a given context.

Different tools are already contributing to the mapping task;
either by introducing different algorithms to automatize or
semi-automatize the task [2],[3] or by providing a graphical
user interface to relate the corresponding entities [4]. Current
approaches often offer both functionalities. However, the tools
and algorithms are generating mappings based on different
formats. The reusability of these mappings is then limited. For
example the mappings resulting of the Prompt algorithm and
those generated by Euzenat’s API are expressed differently. A
common language to specify the mappings will facilitate their
use.

In the following we describe the requirements for a language
to express mappings between ontologies. We then give the
specification of such a language we have designed based on
these requirement. Finally we briefly present a Java API and

its implementation as tools to manipulate this language and to
build applications upon it.

II. REQUIREMENTS

We define an ontology O as a tuple 〈C, R, I, A〉 where C

is a set of concepts, R is a set of relations, I is a set of
instances and A is a set of axioms. This notion of an ontology
is similar to the one in OKBC [5]. In the following we will
call a mapping rule a single correspondence between a set of
ontological entities, a mapping being the set of mapping rules
between a source and a target ontologies.

An ontology mapping M is a (declarative) specification of
the semantic overlap between two ontologies OS the source
and OT the targeet. This mapping can be either unidirectional
or bidirectional. In a unidirectional mapping we specify how
to map terms in OT using terms from OS in a way that is not
easily invertible. A bidirectional mapping works both ways,
i.e. a term in OT is expressed using terms of OS and vice-
versa.

A mapping language has to solve the mismatches that may
happen when trying to align two ontologies. These require-
ments are based on an extensive survey of these mismatches
[6]. We restrict the scope of these requirements to ontologies
written in the same ontology language.

When mapping between two ontologies, one has to specify
the correspondences between each type of entities of the
ontology schema. Namely between the concepts, attributes and
relations defined in the ontology. Simple mappings align one
entity to another. for example a simple mapping will stand
between the concept ’car’ in an ontology OS and the concept
’automobile’ in an ontology OT . The expression of such a
simple mapping is given in an example later in this paper.
The difference of granularity in the ontological descriptions
as well as different understandings of the domain require
more complex mappings than one to one. For example an
ontology OS may have the ’car’ concept as a leaf in the
concept hierarchy, while the ontology OT is more “fine-grain”
described and adds the subconcepts normal-car and sport-car
under the car concept. In that case, the instances of normal-car
and sport-car in OT are both mapped under the concept car of
OS . Conversely, the instances of the car concept in OS may be
distributed between the two subconcepts normal-car and sport-
car in OS . A mapping language must then support mappings
between both union and intersection of entities. Also, it may

2-9525435-0 © IEEE SITIS 2005 - 256 -- 256 -- 255 - - 255 - - 255 -0000000000- 255 - - 255 - - 256 - - 257 - - 257 - - 258 - - 259 - - 260 - - 261 - - 261 - - 261 - - 261 - - 261 - - 261 - - 261 - - 267 - - 267 -

happen that some mappings between classes are only effective
considering the values of their attributes. For example a car
is a sport-car if its maxspeed attribute value is greater than
or equal to 200 Km/h and its 0-100time attribute value (the
time needed to go from 0Km/h to 100Km/h) is lower than 6
seconds. These conditional mappings must then be taken into
account by the mapping language. It is also the case that some
entities may be related but not strictly equivalent, ie one may
be more general than the other. A mapping may be valid from
the source ontology to the target but not from the target to
the source. Thereby, directionality must be reflected by the
language.

Such a language is used as the basis to write mappings. The
mappings may be directly written by a domain expert using
a text editor, or they may also be the result of an algorithm,
or graphical tool. In such a context, the mapping specification
must be easily human readable and its constructs intuitive to
express. In addition it must be easy to include in an application
(output of an algorithm or graphical tool). In the case the that
mappings are produced as the result of an algorithm, the output
may come with additional information about the nature of the
generated mappings. For example, the alignment API [3] gives
information about the algorithm used, the confidence level of
each generated mapping rule and the nature of the relation
between the mapped entities.

In order to be processed to realize the mediation task (query
rewriting, instance transformation and unification) the map-
pings must be grounded to the formalisms in which the source
and target ontologies are designed. Different formalisms are
used apart from OWL , the Web Service Modeling Language
WSML1, used to design the Web Service Modeling Ontology
WSMO [7] being one of them.

We base the definition of our language on this minimal set
of requirements, adding useful features.

III. MAPPING SPECIFICATION LANGUAGE

The requirements presented above are provide the fundation
to design a full-fledged language to support ontology mapping.
In the following we present an overview of the syntax as well
as a description of the API designed to manipulate the mapping
constructs.

A. The Language

The reference of this language as well as its specifi-
cation in Extended Backus-Naur Form (EBNF) are avail-
able on the Ontology Management Working Group web site
http://www.omwg.org.

Answering to the requirements in the last section, the
language contains constructs to express mappings between the
different entities of two ontologies: from classes to classes,
attributes to attributes, relations to relations, but also between
any combination of entities like classes to attributes, etc.

1Informations about WSML is available at
http://www.wsmo.org/wsml/wsml-syntax

Language Construct Description
ClassMapping Mapping between two classes
AttributeMapping Mapping between two attributes
RelationMapping Mapping between two relations
ClassAttributeMapping Mapping between a class

and an attribute
ClassRelationMapping Mapping between a class

and a relation
ClassInstanceMapping Mapping between a class

and an instance
IndividualMapping Mapping between two instances

A set of operators associated to each type of entity give the
possibility to combine them. The following tab represent the
different operators for each type of entity.

Entity Operator
Class and, or, not, join
Attribute and, or, not, inverse, symetric,

reflexive, transitive closure, join
Relation and, or, not, join

Each operator has a cardinality, an effect and some related
semantics. The semantics are related to the logical formalism
used to represent the ontologies. For example the semantics
or the ’and’ operator between two classes is linked to the
semantic of ’and’ in OWL if the mappings are grounded to
OWL.

We model the conditions on which the mappings are valid
by introducing a conditional field in the mapping rules. These
conditions may be a class condition or an attribute condition.
The class conditions are based on their nested attributes val-
ues,occurences or types while the attribute condition are based
on their own values or types. We give in the following table
the different conditions the mapping language can express.

Range Name
attributeValueCondition

Class conditions attributeTypeCondition
attributeOccurenceCondition

Attribute Conditions valueCondition
typeCondition

To get a clear but expressive language we define limited
constructs for the most common cases of mappings, allowing
the user to define arbitrary logical expressions to represent
those which do not have constructs. These logical expression
must be written according to the two ontology modelling
language.

The syntax of this language has been designed to be intuitive
and human readable. This results in a verbose syntax far from
the often used XML syntaxes. We however plan to write XML
and rdf syntaxes and to provide mappings between them.
The language comes with a Java API that provides parsing
and serializing methods to and from an object model of the
mapping document. The following figure presents two simple
ontologies representing the same domain but with a different
modelling perspective. We will give the mapping having for
a source the ’Living Thing’ ontology and for a target the

- 257 -- 257 -- 256 - - 256 - - 256 -0000000000- 256 - - 256 - - 257 - - 258 - - 258 - - 259 - - 260 - - 261 - - 262 - - 262 - - 262 - - 262 - - 262 - - 262 - - 262 - - 268 - - 268 -

’Creature’ ontology.

The top concepts ’living thing’ and ’creature’ are presenting
a terminological mismatch of synonymy. On both ontolo-
gies the concepts ’human’ and ’animal’ are modelled using
the same label. These three cases are simple class to class
mappings expressed in the mapping language. Here are the
statements representing these mappings.

classMapping(
annotation(<"rdfs:label">

’Creature to LivingThing’)
annotation(<"http://purl.org/dc/

elements/1.1/description">
’Map the person concept to

the livingThing concept’)
bidirectional
<"http://ontologies.omwg.org/

creature#creature">
<"http://ontologies.omwg.org/

livingThing#livingThing">)

classMapping(
annotation(<"rdfs:label">

’Animal to Animal’)
bidirectional
<"http://ontologies.omwg.org/

creature#animal">
<"http://ontologies.omwg.org/

livingThing#animal">)

classMapping(
annotation(<"rdfs:label">

’human to human’)
bidirectional
<"http://ontologies.omwg.org/

creature#human">
<"http://ontologies.omwg.org/

livingThing#human">)

The annotation fields allow the input of annotations, for
instance, title or description. This field is also used when
the mappings are resulting from an algorithm, whereby the
information like the confidence degree of the mapping and
the algorithm used are here stated. In our example we use
rdfs and Dublin Core namespace to indicate the nature of the
descriptions. Another field express the directionality of the
mappings. We consider by default a mapping as bidirectional,
meaning that the source and target entities are equivalent.
It may also be unidirectional, meaning that the target entity
somehow subsumes the source one.

The complexities come when mapping the ’male’ and
’female’ concepts in the ’living Thing’ ontology to the subcon-
cepts of ’human’, namely ’adult’ and ’child’ in the ’creature’
ontology. A human male or female is an adult/child if his or
her age is greater than or equal to/lower than 18. This kind
of mapping is represented using a condition. The concepts
are considered mapped only if the condition specified in the
mapping rule is valid. Following is the representation of such
a condition for this example.

classMapping(
annotation(<"rdfs:label">

’conditional female to adult’)
unidirectional
<"http://ontologies.omwg.org/

creature#female">
<"http://ontologies.omwg.org/

livingThing#adult">
attributeValuecondition(

<"http://ontologies.omwg.org/
creature#age ’>=18’))

classMapping(
annotation(<"rdfs:label">

’conditional female to child’)
unidirectional
<"http://ontologies.omwg.org/

creature#female">
<"http://ontologies.omwg.org/

livingThing#child">
attributeValuecondition(

<"http://ontologies.omwg.org/
creature#age

’<18’))

The same rules must then be written for the ’male’ concept
in order to realize a complete mapping. A mapping between
the female/male concepts in the source ontology and the
female/male gender attribute in the target one may also be
created. This kind of mapping is saying: ”The instances of the

- 258 -- 258 -- 257 - - 257 - - 257 -0000000000- 257 - - 257 - - 258 - - 259 - - 259 - - 260 - - 261 - - 262 - - 263 - - 263 - - 263 - - 263 - - 263 - - 263 - - 263 - - 269 - - 269 -

female concept in the source ontology are equivalent to the
instances having a gender attribute with the value ’female’ in
the target ontology”. Here is the representation in terms of the
mapping language.

classAttributeMapping(
annotation(<"rdfs:label">

’map female to gender:female’)
unidirectional
<"http://ontologies.omwg.org/

creature#female">
<"http://ontologies.omwg.org/

livingThing#gender:female">)

classAttributeMapping(
annotation(<"rdfs:label">

’map the male to the gender:male’)
unidirectional
<"http://ontologies.omwg.org/

creature#male">
<"http://ontologies.omwg.org/

livingThing#gender:male">)

B. The Programming Interface

When designing a language, different solutions on the
syntax are offered. The current popular way is to base the
syntax on a well-formed modeling language like XML, the
structure being based on an XML schema. Using such a model
allows the advantage that different tool are provided to parse
and serialize the constructs defined. However, we have stated
as a requirement that the user must be able to easily type and
read mappings. This requires a human readable syntax, which
is not really the case of XML syntax. We express the constructs
of our language using an abstract syntax based on an EBNF
grammar definition. In order to assist the tool developper who
wants to deal with the mapping language in its application,
we provide an Java API offering the following functionalities:

• Parsing the mapping documents. The parser has been
written using SableCC and populates an object model
representing the different expressions of the language.
These expressions may the easily accessed via a set of
classical methods.

• Serializing the mappings. The mappings in the model
may currently be serialized in the mapping language
abstract/human-readable syntax, and in the Web Services
Modeling Language abstract/human-readable syntax. Our
next steps are to propose an rdf/xml export for the
language, as well as export methods to other ontology
representation languages such as OWL and Flora.

The API is freely available under the licence of the Distributed
Ontology Management Environment at the following address:
http://www.omwg.org/tools.html

IV. FUTURE WORK

We are currently working on further improvements to obtain
a workable language with enough expressivity to represent the
complexity of some correspondences between two different
ontologies. Our future work will consist of the following:

A. Relating Axioms

We have not yet considered relating axioms in different
ontologies to each other. We believe that this would not occur
very often in an ontology mapping scenario. However, in an
ontology merging scenario where certain constraints must be
merged, we predict the necessity of relating axioms.

B. Aligning Ontologies Written in Different Languages

Aligning two ontologies written in different languages may
be possible at a certain level. Depending on their degree of
expressivity.[8],[9]. Information integration frameworks based
on the mapping of different logical languages is nowadays a
prominent research area which attempt to solve the problem of
integrating different modeling paradigms having different se-
mantics. It is however possible to perform translations between
languages at the ontology schema level. These translations
are purely syntactic and are expressed using transformation
languages like XSLT.

C. Extend the Mapping Language to Deal with Ontology
Evolution

Ontologies are dynamic objects that evolve through time,
following the domain they model. An important aspect of
ontology management consists in keeping track of the evolu-
tions of an ontology to allow backward compatibility between
the different versions. Expressing the differences between
two versions of an ontology means expressing the different
conceptualization between them. In that scope, an ontology
evolution specification may be seen as a mapping betwee two
versions of the same ontology. We plan in our future work to
extend the mapping language, adding constructs to relect the
evolution of two given versions of the same ontology.

D. Functional mappings

As already stressed, some complex mappings may require
the use of aggregate functions to reflect the modeling dif-
ferences. These functions will not only be used to convert
units, currenceis and measurements from one ontology to the
other, but also to perform string manipulations. For example
splitting a string into two parts and thus creating two instances
from one, or merging two strings to create a new instance
from two given ones. These functions are static in the string
manipulation case but may also have to be dynamic in the
currency transformation case. The mapping language must be
able to express or invoke such functions when necessary.

- 259 -- 259 -- 258 - - 258 - - 258 -0000000000- 258 - - 258 - - 259 - - 260 - - 260 - - 261 - - 262 - - 263 - - 264 - - 264 - - 264 - - 264 - - 264 - - 264 - - 264 - - 270 - - 270 -

E. XML and RDF syntaxes

The current syntax is verbose and human-readable. A spe-
cial parser has then been defined for it. We are currently
writing a XML syntax and will begin to write a RDF one in
the near future, these parsers are generic for these syntaxes,
so one is not obliged to use our API to deal with the mapping
language but can use its own parser.

V. CONCLUSION

In this paper we have presented requirements for an on-
tology mapping specification language for the Semantic Web.
We have presented the language we developed following these
requirements and the API needed to manipulate its constructs.
We have then given future directions for the extension of
this language in order to cope with all the parts of the
ontology mapping task. This language is currently being used
by different mapping tools as part of the SDK European
projects cluster. Its specification and the associated Java API
may be found on the Ontology Management Working Group
web site: http://www.omwg.org/tools/

VI. ACKNOWLEDGEMENTS

This material is based upon works supported by the EU
funding under the DIP and SEKT projects (FP6 - 507483,
506826)

REFERENCES

[1] M. Dean and G. Schreiber, Eds., OWL Web Ontology Language Reference,
2004, w3C Recommendation 10 February 2004.

[2] N. F. Noy and M. A. Musen, “Prompt: Algorithm and tool for automated
ontology merging and alignment,” in Proc. 17th Natl. Conf. On Artificial
Intelligence (AAAI2000), Austin, Texas, USA, July/August 2000.

[3] J. Euzenat, “An api for ontology alignment,” in Proc. 3rd conference on
international semantic web conference (ISWC), 2004.

[4] N. F. Noy and M. A. Musen, “The PROMPT suite: Interactive tools
for ontology merging and mapping,” International Journal of Human-
Computer Studies, vol. 59, no. 6, pp. 983–1024, 2003.

[5] V. K. Chaudhri, A. Farquhar, R. Fikes, P. D. Karp, and J. P. Rice, “OKBC:
A programmatic foundation for knowledge base interoperability,” in
Proceedings of the Fifteenth National Conference on Artificial Intelligence
(AAAI-98). Madison, Wisconsin, USA: MIT Press, 1998, pp. 600–607.

[6] J. de Bruijn, F. Martı́n-Recuerda, D. Manov, and M. Ehrig, “State-of-
the-art survey on ontology merging and aligning v1,” SEKT, Deliverable
D4.2.1, 2004.

[7] D. Roman, H. Lausen, and U. Keller, “Web service modeling ontology
standard (WSMO-standard),” WSMO, Working Draft D2v0.2, 2004.

[8] M. Schorlemmer, “On the mathematical foundations of semantic interop-
erability and integration,” in Semantic Interoperability and Integration,
ser. Dagstuhl Seminar Proceedings, Y. Kalfoglou, M. Schorlemmer,
A. Sheth, S. Staab, and M. Uschold, Eds., no. 04391. Internationales
Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl, Germany,
2005, <http://drops.dagstuhl.de/opus/volltexte/2005/44> [date of cita-
tion: 2005-01-01].

[9] C. Menzel, “Basic semantic integration,” in Semantic Interoperability and
Integration, ser. Dagstuhl Seminar Proceedings, Y. Kalfoglou, M. Schor-
lemmer, A. Sheth, S. Staab, and M. Uschold, Eds., no. 04391. Interna-
tionales Begegnungs- und Forschungszentrum (IBFI), Schloss Dagstuhl,
Germany, 2005, <http://drops.dagstuhl.de/opus/volltexte/2005/42> [date
of citation: 2005-01-01].

- 260 -- 260 -- 259 - - 259 - - 259 -0000000000- 259 - - 259 - - 260 - - 261 - - 261 - - 262 - - 263 - - 264 - - 265 - - 265 - - 265 - - 265 - - 265 - - 265 - - 265 - - 271 - - 271 -

