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Abstract 
 

This paper presents a new method for estimating 
the optical flow field  using the MRF modeling. In 
the MRF framework, the estimation problem 
amounts to the minimization of an energy function. 
We propose an Evolutionary Algorithm (EA) method 
to solve this minimization problem.  It is based on a 
divide-and-conquer strategy which adequately uses 
the markovian property. Experimental results show 
the effectiveness of the method. 

1. Introduction 

Optical flow is the distribution of apparent 
velocities of movement of the brightness patterns in 
an image. Several models of optical flow estimation 
are proposed in the literature [1]. Methods which 
represent the optical flow with at least one 
independent motion vector per pixel, the dense 
motion field, generally use the spatio-temporal 
variations of the brightness in the image sequence. 
Most of them use a constraint based on the gray level 
variations with the assumption that, under ideal 
conditions, the intensity of a pixel is constant 
between two successive images.  
In this paper, the optical flow is estimated by a 
bayesian approach. The Markov Random Fields 
(MRFs) are used to model the motion field. MRFs 
are quite suitable for modeling the global and local 
properties in an image. Optical flow estimation 
modeled through MRFs leads to the minimization of 
a global energy function which specifies nonlinear 
interactions between different image features (gray 
levels in two successive images, motion vectors). 
Generally this is a difficult problem due to the fact 
that it involves a large number of unknowns and the 
function has many local minima. This minimization 
can be achieved either by stochastic relaxation 
algorithms such as the simulated annealing [2] or by 

deterministic relaxation algorithms for example the 
Iterative Conditional Modes  (ICM) method  [3] 
Deterministic algorithms can be missed towards a 
local optimum while stochastic algorithms converge 
to the optimal solutions but require much 
computational time. 
In this study, we propose to use Evolutionary 
Algorithms (EAs) to solve this minimization 
problem. EAs are a type of stochastic search method 
whose functioning is inspired by natural selection 
and the principles of evolution [4]. EAs have 
received a great deal of attention in the recent past 
and are widely used in diverse areas of image 
processing [5-7]. However, to my knowledge, they 
have never been used to estimate the dense motion 
field. Our goal is to show that by suitably exploiting 
the markovian property, EAs can successfully be 
used to estimate motion. 

2.  Background on MRFs  

2.1. Motion estimation modeling with MRFs 

Let S={s1,s2,….,sN } be a finite set of sites of an 
image defined on a 2-D lattice and η a neighborhood 

system on it (see Figure1a). Let D={ =(du,dv) T } 
be a finite set of discrete-value vectors, i.e. du and dv 
take discrete values in the range [-dmax,dmax]. Let 
y=(yt,yt+dt) represent the two successive images in an 
image sequence at times t and t+dt. The goal of the 
motion estimation process is to calculate a 

displacement field label x={ , s∈S} on the basis of 

observation y. In this last expression, =(d1,d2)T is 
a 2-D vector attributed to the site s=(s1,s2) in the 
image yt when this one has moved to the site 
r=( s1+d1, s2+d2)  in the image yt+dt.  

→
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→

Assuming Markov properties of observations and 
motion labels implies that the interactions between 
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the different variables on each site of S remain local 
with respect to the neighborhood system η (see [3] 
for a detailed presentation of MRFs). The 
Hammersley-Clifford theorem allows to write 

 as a Gibbs distribution in the following 
form:   

)/( yxP

))/(exp(1)/( yxU
Z

yxP −=  (1)  yU

where Z is a normalizing constant called the 
partition function and U(x/y) is an energy function 
defined by: 

     y)(xVy)U(x
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∈
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In this formula, Vc is the potential function 
associated with the clique c which consists of either 
a single site or a set of neighboring sites, and C is the 
set of all the cliques derived from the neighborhood 
system η (see Figure 1).  
With the Maximum A Posteriori (MAP) estimation 
criterion, the most likely displacement field label x* 
must maximize the conditional probability  
which, from Baye’s rule, is proportional to 

. Thus the following optimization 
problem has to be solved: 

)/( yxP

)()/( xPxyP

))()/((max xPxyP
x

 (3) 

 Within this framework, finding the MAP estimate 
can be expressed by the following equation: 

{ )))()/(((expmax xUxyU
x

+− }  (4) 

Finally, the displacement field label estimation 
problem amounts to the minimization of a global 
energy function composed of two terms: 

)()/()/( xUxyUyxU +=  (5) 
 The first term is referred to as the brightness 
constraint and is related to the constancy of the gray 
levels. It is given by:  

       
2

∑
∈
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))(( sDFDU(y/x)  (6) (k ϕ=

DFD is the Displaced Frame Difference defined by: 
r

)()()( )( sdttt dsysysDFD +−= +  (7)  
It has been proven that the process converges to the 
global optimum for any starting configuration if the 
initial temperature T0 is sufficiently high and if the 
final temperature reaches 0 at an almost logarithmic 
rate.  In practice, in order to reduce the number of 
iterations required for the convergence, one usually 
takes: 

The second term of the energy function is referred to 
as the regularization  term and is written: 

rr
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where Cs is the set of cliques containing the site s, φ  
is a potential function, ds

r (respectively 
rd
r ) is the 

displacement vector on sites s (respectively r), and 
. is a norm. 

In the standard regularization expressed by Tikhonov 
[8] the potential function φ  is given by: 
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where β is a weighting parameter that controls the 
respective contributions of the two terms U(y/x) and 
U(x) within the global energy. 
Note that the global energy can be written as a sum 
of local energies calculated successively on each 
site. Thus we have: 

∑
∈
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Figure 1. (a) Neighborhood system defined on 
the pixel s. (b) Different cliques of two elements 
derived from the two order neighborhood. 

 
2.2. MAP estimation  

The MAP estimation can be performed using 
either stochastic or deterministic methods. The 
simulated annealing is the most commonly used 
stochastic method. A temperature parameter T is 
introduced into the a posteriori probability as 
follows:  

)/)/(exp(1)/( TyxU
Z

yxP −=  (11)  

The process consists in generating configuration 
samples by using a stochastic relaxation (Gibbs 
sampler for example). The temperature decreases at 
each iteration according to a given schedule such as: 

 T ),0 kT  (12) 
where k is the iteration number. 

  (13) 00 ),( TakT k=ϕ

 where the coefficient α is slightly less than 1.  
A deterministic alternative to the simulated 
annealing method is the ICM in which the global 
energy is minimized by sequentially updating the 
different sites of the motion field. At a given 
location, the value assigned to a site is the one that 
minimizes the local energy function which depends 
on the visited site and also on its neighbors. The 
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result is a local optimum in most cases, and it 
depends on the initial configuration. The simplest 
way to initialize the process is by setting the null 
vector (i.e. vector 0

r
) to all the displacement field.  

3. Motion estimation using EAs 

EAs are adaptive procedures that find solutions 
to problems by using an evolutionary process based 
on natural selection. A GA uses a fixed- or a 
variable-size, finite population of potential solutions 
to a problem. Each individual solution is encoded as 
a chromosome made up of a string of genes which 
take values in either a binary or a non-binary 
alphabet. A GA comprises three main stages: 
evaluation, selection and mating. They are applied 
cyclically and iteratively until a saturation or other 
stopping criterion is satisfied. At the evaluation 
stage, each chromosome is assigned a fitness value 
which represents its ability to solve the problem. The 
fitness function directly relates to the objective 
function to be minimized or maximized.  

 
3.1. Basic Evolutionary Algorithm 

3.1.1. Coding and fitness: Recall that our goal is to 
estimate the displacement vector for each site in the 
image. Let NxM be the size of the images of the 
sequence. A chromosome corresponds to a possible 
solution of the optical flow and is encoded as a NxM 
grid of genes which are 2D vectors. Each coordinate 
of a gene takes an integer value in the interval [-a, 
a]ÕZ (a is the maximum motion magnitude in the 
two directions of a pixel between two consecutive 
times. 
The fitness of a chromosome corresponds to the 
energy  calculated from the Equation 10. So, the 
better the chromosome, the smaller its fitness value.  
 
3.1.2. Selection: We have implemented an elitist 
strategy. First, all the chromosomes of the current 
generation are sorted based on their fitness value. 
Second, some of the best chromosomes are 
incorporated into the next generation. The number of 
selected best chromosomes is calculated with respect 
to a rate ps. Third, the best individual from two 
individuals randomly chosen from the whole current 
population is selected. This tournament is repeated to 
choose a second individual. These individuals 
participate in the crossover to create children which 
are incorporated into the next generation. The 
process is iterated until the next generation is 
complete. 
 

(-2,1) (1,1) (1,1) (0,-1) (1,1) (1,1) (1,-1) (1,-1) 

(0,-1) (0,-1) (0,-1) (1,1) (0,-1) (0,-1) (1,-1) (1,-1) 

(0,-1) (0,-1) (1,1) (1,-1) (0,0) (2,-2) (2,-2) (1,1) 

(2,-2) (1,-1) (1,-1) (1,-1) (1,1) (2,-2) (2,-2) (0,-1) 

(2,-2) (-2,1) (0,0) (2,0) (2,1) (0,-1) (0,-1) (-1,1) 

(-2,1) (2,1) (2,1) (0,0) (2,1) (0,0) (0,0) (0,0) 

(-2,1) (0,-1) (1,-1) (-1,-1) (2,1) (0,0) (0,0) (0,0) 

(-2,1) (0,-2) (0,-2) (0,-2) (-1,-1) (-2,1) (-2,0) (1,1) 

 
Figure 2. Chromosome example (8x8 image 
size - a=2). 
 
3.1.3. Crossover: The crossover is performed with a 
probability pc. We have implemented two different 
crossover operators. The first one is the uniform 2D 
two-point crossover operator which swaps a 
randomly chosen part of two parents to produce two 
children (see Figure 3). 
The second crossover operator is the arithmetic 
crossover. Two children are produced from two 
parents as follows: 
Child1(i,j)=α.Parent1(i,j)+(1- α).Parent2(i,j) (14a) 
Child2(i,j)=(1- α)Parent1(i,j)+ α.Parent2(i,j) (14b)  
where α is a random number, with uniform 
distribution in [0,1], 1≤ i≤ N and 1≤ j≤ M.  
To choose one of the two crossover operators, a low 
probability pl is assigned to the arithmetic crossover.  
 

3.1.4. Mutation: The mutation is performed on a 
chromosome with a probability pm. We have 
implemented two mutation operators. The first one is 
the two-point mutation which swaps the loci of two 
randomly chosen genes. The second mutation 
operator is a self-adaptation mutation which 
performs a local minimization near a chromosome. 
Some genes of the chromosome to be mutated are 
randomly chosen for modification. For each selected 
gene, a new value is chosen randomly and uniformly 
in the range of definition, to be tested. If the local 
energy calculated on the image site corresponding to 
the gene decreases, the new gene value is 
maintained, otherwise the change is refused. 
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Parent1 Parent2 

Child2 Child1 
 

Figure 3. 2D two-point crossover. 
 
To choose one of the two mutation operators, a 

low probability pmm is assigned to the self-adaptation 
mutation while (1-pmm) is assigned to the two-point 
mutation. 
Applying the basic evolutionary algorithm consists 
in randomly generating an initial population of 
chromosomes, then the different steps described 
above are iteratively performed until a stopping 
criterion.     The major limitation of the basic 
evolutionary algorithm is its relatively slow 
convergence. Indeed, the algorithm essentially 
searches through various combinations of the 
chromosome gene values and the number of possible 
combinations equals to 2(a+1)NxM . A rigorous 
analysis of the algorithm computational complexity 
is difficult to perform since the general convergence 
of an evolutionary algorithm is hard to quantify. 
However, as shown in Figure 4, the computation cost 
increases exponentially with the chromosome size 
(i.e. the image size). So, we propose a divide-and-
conquer strategy in order to limit this computational 
time drawback. 
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 Figure 4. GA computation time versus  
chromosome size. 
 
3.2 The Divide-and-Conquer strategy 

The main idea of the proposed optical flow 
estimation strategy with GA consists in dividing the 
image into smaller image parts each of which is 
independently handled and the results are adequately 
combined in order to obtain the final result. This 

strategy is based on the markovian property of the 
observations and labes. Indeed, the computation of 
the local energy on a site depends only on its 
neighbors (i.e. elements of cliques that contain the 
site). Thus the estimation can be performed 
independently (i.e. in parallel) at two different sites 
which are not neighbors. Let Np be the number of 
image parts and let  Tp denote the execution time 
needed for an image part. The global execution time 
for processing the whole image is equal to TpxN, 
which is linear according to Tp. However, because of 
the border effects, dividing the image will generate a 
mosaic effect on the final global result. Therefore at 
least two steps are necessary in order to solve this 
drawback. In the second step, the image division is 
shifted from the first step image parts so that by the 
combination of the results obtained from the two 
steps the gaps created in each step are filled (see 
Figure 5).  
 

 

S tep1  resu lt S tep2  resu lt 

F ina l resu lt 
 

Figure 5. Scheme of the divide-and-conquer 
strategy. 

4. Experimental results 

In this section we present experimental results 
obtained with the proposed GA method (called 
DCGA) on one synthetic and two real world image 
sequences. In all cases, these results are compared 
with the ones obtained on the one hand with the ICM 
and on the other hand with the simulated annealing. 
The synthetic sequence (called Disc-Square) 
concerns two objects on a white background: a 
gaussian brightness disc which undergoes a rotation 
in the trigonometric direction, and a square which 
translates one pixel up and to the right (see 
Figure6a). The real world sequences are the well 
known sequences Train and Interview (see Figure6b 
and Figure 6c).  
For the sake of visibility, the estimated dense motion 
fields are represented by gray level images. Figure 7 
shows the different gray levels  attributed to each of 
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the nine possible displacement vectors on a given 
pixel. 
 

   
(a)                   (b) 

 
(c)  

 
Figure 6. Single images from the respective 
experimental image sequences. (a) Disc-Square 
sequence; (b) Train sequence; (c) Interview 
sequence. 
 

 
Figure 7. Gray level representations of 
displacement vectors. 
 

 
Table 1 and Table 2 respectively give the parameter 
values of the DCGA and the simulated annealing.  
 
Table 1. DCGA parameter values. 
 

 
Table 2. Simulated annealing parameter values. 
 

 

With the Disc-Square sequence, the ICM and the 
simulated annealing are randomly initialized, while 
the processes are initialized to the null displacement 
field with both the Train and the Interview 
sequences. Furthermore, the number of iterations of 
the ICM is not limited, but the process is stopped if 
the number of modified sites during the last iteration 
is less than 10.  
Figures 8, 9 and 10 show the optical flow field 
results obtained from the three sequences with 
respectively the DCGA, the ICM and the simulated 
annealing. As seen in Figure 8a the Disc-Square 
DCGA result is almost perfect. The square 
translation and the disc rotation are well detected. 
Moreover as expected, no motion is estimated in the 
image background. However, particularly in the 
square, one can observe the mosaic effect due to the 
splitting step of the DCGA. Concerning the ICM and 
the simulated annealing results (respectively Figures 
8b and 8c) it can be noted that in both cases the 
square translation is well estimated contrary to the 
disc rotation motion in which there are many 
incorrect displacement vectors. In addition, the main 
drawback in these two results is the random motion 
detected on the image background. 
 

         
(a)                                       (b)                                       (c) 

 
Figure 8. Disc-Square optical flow results. (a) 
DCGA result; (b) ICM result;  (c) Simulated 
annealing result.. 
 

      
(a)                                                             (b) 

                                                               (c) 

Figure 9. Results on the Train sequence.  

Elite rate ps 0.04 
Crossover rate  pc 0.8 
Arithmetic crossover rate pl 0.2 
Mutation rate pm 0.1 
Adaptive mutation rate pmm 0.1 
Maximal generation number 200 
Chromosome size 8x8 
Population size 50 

(a) DCGA result; (b) ICM result; (c) Simulated 
annealing result. 

Decreasing coefficient α 0.9 

Initial temperature (T0) 250 

Maximal iteration numbers on synthetic (and 
real) image sequence 

200  (1000) 
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‘a)                                                       (b) 

 
(c)   

Figure 10. Results on the Interview sequence. 
(a) DCGA result; (b) ICM result; (c) Simulated 
annealing result. 
 
The results on the real world sequences are more 
difficult to analyze (see Figures 9 and 10). Whatever 
the method, one can observe that the different 
feature motions in the images are globally well 
detected. 
To quantify the goodness of these results, we have 
calculated the differences between the images at time 
(t+dt) and the images obtained from the images at 
time t and from the estimated motion fields. If the 
estimated displacement on a given site is incorrect, 
this difference value may not equal zero. Table 3 
gives the numbers of “incorrect” pixels in the 
respective results. It can be observed that the number 
of pixels in the DCGA difference image is almost 
twice smaller than in the case of ICM and the 
simulated annealing.   
 
Table 3. Numbers of incorrect pixels.  
 

Methods DCGA ICM Sim. Ann. 
Numbers of 
incorrect pixels

4079 7395 7091 

 
And finally, Table 4 shows the computation times 
involved by the three methods on the different image 
sequences. It must be noticed that as the DCGA and 
the Simulated Annealing are stochastic methods, 
thus these values are the mean values calculated 
from more that twenty runs. As expected,  it can be 
observed that the ICM is much faster than the two 
other methods. However, the respective computation 
times of DCGA and simulated annealing are similar. 
 

Table 4. Computation times of the different 
methods. 
 

Methods DCGA ICM Sim. Ann.
Disc-Square (64x64) 47 0.3 42.3 

Train (512x400) 1234 21.4 1140 

Interview (128x160) 130 1.75 120 

5. Conclusion 

An Evolutionary Algorithm method is proposed 
for estimating the optical flow field using a MRF 
modeling. It is based on a divide-and-conquer 
strategy which adequately uses the markovian 
property. Experimental results on synthetic and real 
sequence images show that the method provides 
quite satisfactory results while the execution time is 
significantly reduced compared to the basic EAs.  
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