
 Modeling an Automated System,

that manages the mapping and splitting of parallel databases

 for better efficiency of access of distributed systems .

Saleem G. Zougbi
Bethlehem, Palestine (saleem@bethlehem.edu)

 This research was started while the author was a research visitor at the International Institute of Software Technology,
United Nations University, Macao, SAR China in 2004, and completed in 2005.

Abstract

 Modeling an automated system, that manages the

mapping and splitting of parallel databases for better

efficiency of access of distributed systems. The

problem of splitting this large database into clusters

and shipping them from one place to another across

the nodes of the network would yield to a very

reasonable and agreeable performance for large
distributed DB systems. Selecting the splitting method

and implementing it according to a distributive plan

could be programmed to run automatically. This paper
is based on a research that focuses on the idea of using

adaptive digital filtering technique in order to monitor,

decide and implement parallelism in distributed heavy
data base applications.

Keywords
Parallel databases, distributed processing, adaptive
information management, database structures, adaptive
filtering applications.

1. The problem

 The centrality of large information systems that
use huge databases is no more realistic. Online
applications have explicitly stressed the need for
technical ability to access large data components. This
access could be in form of simple look-up or highly
volatile in terms of updates and/ or processing. The
design of data bases naturally started to involve
making decision on the splitting, fragmentation and
positioning of data, and to a high degree programs too,
across different nodes and sites of a computer network.
In this research, a new priority approach was
addressed. It is the frequency of accessing database
information, whether in horizontal or vertical
structures, with the dynamic nature is represented
through frequency analysis. The higher order
magnitude of the database components imply heavier
communications tasks, and hence poor and in efficient
database information access. As an example, consider
clinical information systems that house information
about patients. Assuming that large numbers of
patients and the type of information is mainly object
oriented with a lot of higher resolution medical images
for example, the aggregate of data records pertaining to
a particular patient becomes of vital importance to
access whenever medical examination is carried out for

this patient. If this large database resides on a central
server, and having medical staff consulting this
database from remote sites, the access efficiency
becomes a serious impediment to users. Serious and
urgent action becomes mandatory if access becomes
more permanent, i.e. more frequent. An example is
when the patient moved to the site of the other remote
node. In such a situation, shared-disks databases
become inefficient and shared-nothing approach
becomes a very realistic approach to use. The critical
issues become when to split, and what factors the
splitting decision is to be based on, to achieve best
efficiency possible in terms of optimizing access and
SQL requests over the larger network.

 As a matter of fact, the presence of a parallel
object database server would add an important task
besides its normal SQL-oriented queries. In general,
the classical central DB system is characterized by a
unified information structure. However well designed
and elaborate this system is, the fact remains that there
are user requests and queries from other systems online
and that the information aggregates are relatively large
and require heavy access time and storage.

Normally the source of requests comes from a
quasi-static client. This means that certain parts of the
information aggregates are requested from a client that
does not change. Imagine that this DB is a huge
patient’s information aggregate. This patient’s
information is requested normally in a certain city and
a certain clinic, and very rarely it would be queried
from other places.

 The other characteristic is that this information
aggregate would not concern other users or requests.
Therefore we would look for a place to host this
aggregate that is the closest (in communication routing
and least overhead). Therefore the problem is to devise

an algorithm where decision is taken as to where to

host (split it from the central DB and transfer it to that

place), and how this process can be automated.

2. The proposed approach

 Examine figure 1. The classical central system is
shown in a four-tier structure: the users, the database
user interface, the DB controls and the actual DB
system. The users can be different clients over the
network, but the DB system is present on a server, that

2-9525435-0 © IEEE SITIS 2005 - 96 -- 96 - - 149 - - 149 - - 149 -

is serving other clients on line. In contrast, if the fourth
tier is split into n chunks, and physically stored in
different nodes, the optimal performance criteria
described above can be achieved. Notice that a shared-
nothing parallel database is the main concept of this
splitting. Figure 2 shows such a solution.

In this research, I propose an approach that is based
designing a software system that would perform the
task of splitting in an adaptive automatic way
depending on user SQL requests. The approach is
based on the analysis and study of the procedural
performance specification, with application of digital
filtering techniques. This is done in the following
manner:

Modeling the SQL’s (type, frequency, and
overhead costs (such as time, response, volatility)
Decision-making support in terms of the model
of the SQL’s
Ability to adapt to changing facts and
characteristics of the model

3. Current Research

Currently, the state-of-the-art in this field is to focus on
research into parallelism, rather than on the ODBMS
interfaces.

Although there has been little work on the usage of
parallelism to provide scalable performance in Object
Database Management Systems (ODBMS), the
dynamism of this parallelism is the critical issue of this
suggested solution.

 One could argue that the very expensive solution
of using machines like the IBM z9-109 model for
example, where multiple I/O architecture permits fast
and efficient I/O access and management, a much more
pragmatic and cheaper solution is highly desired
specially in applications of users which have limited
technology and support.

 Previous research on the issue of the design of
distributed databases involved making decisions on the
fragmentation and placement of data and programs
across the sites of a computer network. This process
was a systematic analysis and design that required
proper studies and then working on to indicate the
most adequate fragmentation technique to be applied in
each class of the database schema. It also includes
finding the proper algorithms for horizontal or vertical
splitting.

 Some consideration was given to the idea of using
techniques based on stochastic Petri nets (SPN) to
analyze the statistical behavior of node-perceived
dependability and performance of the splitting, but

adaptive filtering techniques seemed to be a much
simpler solution and can yield efficient results as well.

The literature survey examined several current
approaches to this problem. Among these were how to
balance dynamic loads on inter-transaction and intra-
transactions [Rahm & Marek]. Some suggestions
included skew handling of parallel joins [Dewitt et
al.]or even to use buffer management based on
priorities [Jauhari et al.], implementing transient
versioning [Mohan et al.]. The research even also
considered the symmetric & peer-to-peer storage

User

Database user interface

Database Environment and
DB Information system

S
Q

L
 d

ata

q
u

eries an
d

co
m

m
an

d
s

D
B

M
S

m
an

ag
em

en
t

lev
el

UserUser

Fig 1: A central disk-shared (and/or
memory-shared) DB server

Splitting – manager &
adaptor

Database user interface

UserUser User

S
Q

L
 d

ata

q
u

eries an
d

co
m

m
an

d
s

D
B

M
S

m
an

ag
em

en
t

lev
el

DB#1 DB#2 DB#n

Fig 2: A shared-nothing parallel DB system
on many DB servers

- 97 -- 97 - - 150 - - 150 - - 150 -

relations: Samsara [Cox & Noble]. In all these
algorithms and work, the concept of static situation
was the dominant factor, even for short periods of time
for user nodes. The problem emphasizes here is that
such algorithm would have to be flexible and self-
changing to fit unexpected patters of change of the
incoming SQL’s.

4. Assumptions

 There are certain assumptions of the database that
this research is based on. These are:

1. A central database with large number of records
(high DB dimension), going vertically in
different levels (depending on data type and
content) and horizontally(depending on
heterogeneity of the data components)

2. Sizes of data components differ widely in sizes,
ranging from simple fields and chunks to huge
aggregates of data.

3. Data records are to be accessed from anywhere
on the wider network.

4. Likelihood of shared data records or aggregates
is next to zero, i.e. needs are basically pier-to-
pier

5. The decision of splitting

 The concept behind the splitting process is the
following:

Maintain the separation of the Database starting

as a central and shared-disk system. A software

agent, the suggested solution, referred to in this
paper as the “smart splitter software (SSS)” is

residing quietly interception the queries, and

recording them.

 The SSS is a software system that would
automatically monitor, decide and implement the
algorithms for the operation of this parallel shared-
nothing object data base management system. It would
depend on using computed figures of merit indicating
the frequencies of access and SQL operations for each
record (or cluster of records). Once these figures are
computed, it processes these figures of merit in a real-
time method into a digital filter that has response
redesigned automatically to adapt to the changing
needs of incoming SQLs. It also has the task to
supervise, decide on and implement the motion that
optimizes the overall performance of the DB. Notice
that the motion is not only from the server to the node
in question, it could be also in the reverse direction, i.e.
instead of splitting, it could be joining, if the queries
have changed source, and have become critical to
justify return of these aggregates back to the server, or
to another node, passing by the server.

Fig. 3: The Central initial structure

Fig. 4: The parallel shared-nothing data base

6. The Filtering process

 As queries repeat, and according to sufficient
reason, the SSS collects these requests and process
them in a specially designed digital low-pass filter, of
which the output is decided as low or high. If high,
then a decision to split is taken and the data aggregate
of which its queries has generated this data and
decision, will be split and sent to the node that is the
source of the most of these queries.

 The issues here for optimal “filtering” and
decision making are what kind of filter, and what are
the parameters for it. In fact the filter coefficients are
recalculated periodically, since queries and requests
may change periodically, even from the main node that
generates them. This is the “Adaptive” nature of the
filter.

 The requests are counts of frequency over a period
of time. Every time a querying SQL comes for a
specific data aggregate is kept as a discrete function

1,1,0:{ MkxX jkj

where M is the number of time periods examined, and j
is the jth node.

- 98 -- 98 - - 151 - - 151 - - 151 -

 In general, it is modeled as

1,11,10,1

1,11,10,1

1,01,00,0

MNNN

M

M

xxx

xxx

xxx

X

 The columns are the frequency counts of SQL’s
from each node in one time period, and the rows are
the frequency counts of one signal node in all time
periods.

 The node that is most involved is the one that has
a high enough total of counts in that period, selecting
the node j as

1,1,0
1

0

, NjxX
M

k

kjj

 By examining all values of Xj one will be selected
as the active node. This could be as simply as selecting
the j for which a maximum value of Xj is found, or
perhaps selecting the one that has the largest positive
standard deviation form the mean of the all the sums.
In either case, the value of j that corresponds to the
selected value represents the node that is involved in
this process.

 Now add all the frequency counts of that node,
that is find the vector V corresponding to the node j

T

Mjjjj xxxV }{ 1,1,0,

 Already an IIR filter has been designed with a pre-
calculated cut-off frequency, as

1

0

2

0

N

k

N

k

kkk
j

kn YbVaY

 Notice that the sequence Y and V change for N

signals with shifting in time as SQL’s keep coming in.
This is like having memory only for the last N time
periods.

 The a’s and b’s are constants of the filter
coefficients. Selecting the size of the filter, i.e. the
value of N and these coefficients will determine how
accurate and smooth the filter can work. The result of
the filter is the output Y which can be sued to
determine if it is high enough or not. If high enough,
then a decision to split the data aggregate of which its

frequency data has been used, to be split and
transferred to node j.

Fig. 5: The Adaptive filter

 Some important considerations are:
In fact an IIR (Infinite Impulse Response filter) is
picked up as the design to reflect “infinite duration
difference calculus applied, i.e. a sense of
permanent operation.
The coefficients can be DFT, Z-transform, Fermat,
Hadamaard or other suitable frequency domain
discrete transform
The Cut-off frequency (fc) is not to be kept
FIXED, it is reselected depending on historical
statistical record of how many times a motion is
done etc.
After selecting it, use an algorithm to redesign the
filter again (i.e. in a form of iteration: use existing
values to recalculate ai and bj for new values such
as Butterworth or Chebyscheff)

Fig. 6: The Block diagram of operation

 In other words, SSS is designed to operate as
follows:

It (SSS) resides on the Server quietly
Its main task is to do the switching records from
data to url mode and vice versa (data motion)

- 99 -- 99 - - 152 - - 152 - - 152 -

Monitoring access history, calculating access
parameters
Adapting itself to new facts and statistics
according to access history of incoming SQLs
Predicting types of motion on clusters of data
records such as Brownian, periodic, systematic,

or immigration, & adapt DB accordingly
Finding an optimal pattern for the SQL machine
to access the parallel DB for administrative
purposes without resorting to motion again (i.e.

separate client from administrator requests)

7. Conclusion

 Basic simulation has been done using randomly
generated sequences of queries and requests and
algorithmic design of a Chebyscheff filter gave a model

of software structure to base its design on.

 Currently work is going on this model. Future

work will include programming of this SSS and testing

it on a server-based small network in the lab.

Fig. 6: The Systems component diagram

References

[1] Kaladhar Voruganti, M. Tamer Özsu, Ronald C. Unrau,
Journal of Distributed and Parallel Databases: “An
Adaptive Data-Shipping Architecture for Client
Caching Data Management Systems”, Vol. 15 (2): pp.
137-177, March 2004

[2] Fernanda Baião, Marta Mattoso, Gerson Zaverucha,
Journal of Distributed and Parallel Databases: “A
Distribution Design Methodology for Object DBMS”,
Vol. 16 (1): pp. 45-90, July 2004

[3] Lawrence Mutenda, Masaru Kitsuregawa, Parallel and
Distributed Systems: “Parallel R-Tree Spatial Join for a
Shared-Nothing Architecture”, Institute of Industrial
Science, Tokyo

[4] Jim Smith, Sandra Sampaio, Paul Watson, Norman W.
Paton, ACM 0-89791—88-6/97/05: “Polar: An

Architecture for a Parallel ODMG Compliant Object
Database”, CIKM’ 2000 Washington D.C., USA

[5] V. V. Khodorovskii, Programming and Computer
Software: “On Normalization of Relations in Relational
Databases”, Vo. 28 (1): pp. 41-52, January - February,
2002

[6] Ing-Ray Chen, Ding-Chau Wang, Chih-Ping Chu,
Journal of Distributed and Parallel Databases:
“Analyzing User-Perceived Dependability and
Performance Characteristics of Voting Algorithms for
Managing Replicated Data”, Vol. 14 (3): pp. 199-219,
November 2003

[7] Cyrus Shahabi, Yi-Shin Chen,Journal of Distributed and
Parallel Databases: “An Adaptive Recommendation
System without Explicit Acquisition of User Relevance
Feedback”, Vol. 14 (2): pp. 173-192, September 2003

[8] E.G. Hoel, Proceedings of the 23rd Intl. Conf. on
Parallel Processing: “Data-Parallel Spatial Join
Algorithms”, pp. 227-234, 1994

[9] M. Olson, W. Hong, M. Ubell, M. Stonebraker, Data
Engineering Bulletin: “Query Processing in a Parallel
Object-Relational Databse System”, vol. 19(4) pp. 3-10,
1996

[10] Nicolas Perrin, Bonnie Heck Ferri, “Digital Filters with
Adaptive Length for Real-Time Applications”, Georgia
Institute of Technology, Georgia, USA

[11] Samir Khuller, Yoo-Ah Kim, Yung-Chun Wan, Society
for Industrial and Applied Mathematics (SIAM):
“Algorithms for Data Migration with Cloning”, vol 33,
No. 2 pp. 448-461, 2004.

[12] Peter Buneman, Sanjeev Khanna, Keishi Tajima, Wang-
Chiew Tan, “ACM Transactions on Database Systems:
“Archiving Scientific Data”, vol. 29 Nr. 1 pp. 2-42,
March 2004

[13] Fernando Pedone, Rachid Guerraoui, André Schiper,
Journal of Distributed and Parallel Databases: “The
Database State Machine Approach”, Vol. 14 (1): pp. 71-
98, July 2003

[14] Shashi Shekhar, Sivakumar Ravada, Vipin Kumar,
Douglas Chubb, and Greg Turner, “Load-Balancing in
High Performance GIS: Partitioning Polygonal Maps”,
publication of GIS database applications proceedings

- 100 -- 100 - - 153 - - 153 - - 153 -

