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Abstract. This paper deals with iterative joint source channel decoding and its 
application to image transmission. First, the problem of transmitting a 
correlated gaussian source over an AWGN channel is considered. The joint 
decoding is implemented by the Baum Welch algorithm estimating the source 
statistics. Iterations between the MAP channel decoder and the source decoder 
are made to improve the global decoder performance. This decoding scheme is 
then applied to an image transmission system, based on a wavelet 
decomposition of the source image followed by a DPCM coding of the lowest 
frequency subband and a SPIHT coding of high frequency subbands. 
Simulation results show that a significant performance gain is obtained with  
iterative joint source channel decoding, compared to a classical decoding, in 
case of a correlated gaussian source and also in case of image transmission. 

 

Keywords: Joint Source-Channel Decoding, Iterative Decoding, Baum-Welch 
Algorithm, DWT, DPCM, SPIHT. 

1   Introduction  

  In traditional communications systems, source and channel coding are performed 
separately. However, the separation between source and channel coding has turned 
out to be not justified in practical systems due to limited coding/decoding delay and 
system complexity. On these circumstances, one can improve performance by 
considering the source and channel design jointly. Research on this area goes back to 
the work of Fine [1] and continuous to the present [2].  

On the other hand, Turbo-codes [3], with their iterative decoding techniques, 
achieve very good performance, which are close to the theoretical limit of Shannon.  
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  In this paper, we consider the problem of transmitting a correlated source over an 
AWGN (Additive White Gaussian Noise) channel. This source is protected by a 
convolutional code. We use the turbo codes principle to release an iterative joint 
source channel decoding algorithm with estimation of source statistics. This scheme is 
applied to an image transmission system. In the first section, we briefly remind the 
Baum-Welch algorithm principle, applied to joint source-channel decoding. The turbo 
decoding principle is used in the second section, to release an Iterative Joint Source 
Channel Decoding (IJSCD) algorithm. Performances of iterative decoding for a 
correlated gaussian source transmission are presented in section 3. In the forth 
section, the IJSCD is applied to an image transmission system, based on a wavelet 
decomposition of the source image followed by a DPCM (Differential Pulse Code 
Modulation) coding of the lowest frequency subband and a SPIHT (Set Partitioning in 
Hierarchical Trees) coding for high frequency subbands. Finally, simulation results 
for the lowest frequency subband and the entire image, are respectively given. Section 
5 draws conclusions and suggests future work.  

 

2   Joint source-channel decoding and estimation of correlated 
source parameters 

We consider the problem of encoding and transmitting a source signal vector         
I={i0,i1,…,it,…,iT-1} over a noisy channel. We still want to know the sequence of 
transmitted source indexes it but they are not directly observable because of the 
possible corruption by the channel. Instead, we have the received indexes,                  
O={o0,o1,….,ot,….,oT-1}, which are the observations related to the input 
probabilistically. This situation can be directly interpreted as a discrete Hidden 
Markov Model (HMM). A discrete HMM can be defined by two parameters and three 
probability matrices. The parameters are K the number of states, and T the source 
sequence length [4]. To determine, at each time, the most likelihood symbol, we use 
the BCJR (Bahl Cocke Jelinek and Raviv) algorithm originally proposed in [5] and 
based on the forward-backward algorithms. The BCJR allows to calculate the a 
posteriori probability denoted γt(i): 

 

],[)( λγ OiIPi tt ==  . (1) 

 
     To calculate γt(i), we need to determine two variables: αt(i) and βt(i). The BCJR 
algorithm combines the forward induction with the backward one to compute the 
probabilities γt(i). For more details refer to [5]. The methods above allow to determine 
the most likelihood a posteriori symbol, where γt(i) is maximum, with consideration 
of a hidden Markov source whose parameters are known. A more powerful approach 
would allow the receiver to use the noise-corrupted observations available in the 
decoder to estimate the parameters characterizing the hidden Markov source. We will 
estimate source statistics by the Baum-Welch algorithm called also EM [6][7]. 
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Estimation of source parameters at the receiver 
 
We try to estimate the source transition matrix A. Its elements ai,j are the source 

transition probabilities: 
 

 1,0],[ 1, −≤≤=== − KjiiIjIPa ttji  .                    (2) 

 
 To do that, we introduce a new parameter Ψt(i;j) representing the probability that 

source state is i at the time t and j at time  t+1: 
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 The re-estimation formula is then given by:  
 

)(

),(

2

0

2

0
,

i

ji
a T

t
t

T

t
t

ji

∑

∑
−

=

−

==
γ

ψ
 . 

 

(4) 

After having re-estimated the parameter A of the initial hidden Markov model, the 
algorithm will repeat iteratively the re-estimation with the new model (we calculate 
another time the α and β values).This process can be repeated iteratively until no 
further improvement in the model results.  The transition source matrix A is initialised 
as follows: ][)0(

, jIPa tji == . After calculating the a posteriori probabilities, we 

determine at each time t, the value ît maximising γt(i). ît is the most likelihood symbol 
value at the time t which will be decoded. 

 

3   Iterative joint source-channel decoding 

3.1   System model 

 
We consider the system model shown in figure1. The correlated source produces a 

sequence of T continuous-valued, gaussian distributed symbols, with a variance equal 
to 1 and a correlation factor equal to 0.9. Each symbol of the sequence is quantized by 
a scalar quantizer, that produces a sequence of indices I= ),......,.....,( 10 −Tt iii . 
According to a fixed length bit mapping, each index it is assigned a unique binary 
sequence Bt= ),.....( ,1, Ltt bb , which generates a bit sequence                                       
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B = ),.....,......,( 10 −Tt BBB of length K=T*L bits, where L is the binary code word 
length. This bit sequence is bitwise interleaved with an interleave denoted π, before 
being coded by a recursive systematic convolutional encoder and transmitted over an 
AWGN channel using BPSK modulation. The received sequence is denoted 
Y= ),....,,....,(;)......,,...,( ,,1,10 LtltttTt yyyyyyy =− . It constitutes the iterative 
decoder input. 
 
 

 

 

 

 
 

 
Fig.1. System model with IJSCD (Q: Scalar Quantizer, FLC: Fixed Length Bit Mapper, 
π: Interleaver) 
 

 Both source and channel decoders are Soft In/Soft Out (SISO). The MAP algorithm  
is used as a channel decoder, while the Baum-Welch (EM) algorithm is used as a 
source decoder estimating source statistics. The Iterative Joint Source Channel 
Decoding (IJSCD) method will now be described.  

3.2 Iterative Joint Source Channel Decoding (IJSCD) method 

 
 The iterative decoding scheme is related to turbo decoding. It consists of a data 

exchange between two or more channel decoders which are SISO decoders. The 
source and channel decoders receive and send their messages in terms of Log-
Likelihood Ratio (LLR). Let’s remind that we have an information exchange between 
the source decoder, operating with symbol data, and the channel decoder working 
with bit data. So we need conversion blocks P(S) P(B) and P(B) P(S), which allow 
to calculate bit probabilities from symbol ones and back again. The channel decoder 
allows us to determine an a priori information Las for the source decoder. However, 
this information is a bit information and the Baum-Welch algorithm needs a symbol 
one. The conversion bloc P(B) P(S) is used to calculate symbol probabilities from 
bit ones. Formally, if we write the probabilities for each bit input to the  P(B) P(S) 
block as ( )cbP ltA =, , where c ∈{0,1}, then symbol probabilities are approximated 
by the product of the corresponding bit probabilities: 
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where )(imapl  is the bit of position l in the bit word mapping the symbol i. The 
probability PA is determined from the a priori information Las: 
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At the output of the source decoder, we need to know the bit probabilities to 

calculate the extrinsic information rescued at the channel decoder. The Baum-Welch 
algorithm used for the source decoding provides the a posteriori symbol probabilities. 
Therefore, we need to apply the P(S) P(B) conversion. The bit probabilities are 
derived from the symbol ones as follows:          

Then, the source decoder output is given by:  

     We subtract the a priori information values Las from this information to get the 
extrinsic values Les, rescued, after interleaving, to the channel decoder as an a priori 
information Lac . This decoding procedure is repeated iteratively. We pull up when 
performances stop to improve. 
 

4   Simulation results (Case of a correlated Gaussian source) 
 

To evaluate the proposed system (figure1) performances, we plotted the Bit Error 
Ratio (BER) evolution, as a function of the signal to noise ratio Eb/N0. The results 
achieved are compared to a transmission chain using a classical decoding scheme 
(without iterative joint source channel decoding), considered as a reference chain. 
This chain uses in fact, the Viterbi algorithm as a channel decoder. We have 
considered the transmission of a sequence of 400 symbols, issued from a one-order 
Markov Gaussian source, with a variance equal to 1 and a correlation factor equal to 
0.9. Each symbol value is quantized by a one step uniform scalar quantizer. The 
quantized indexes belong to a source alphabet of size 7. The fixed length bit mapper 
(FLC) associates to each quantized index a 3-bit binary code word. We have used a 
recursive systematic convolutional code [8] with generator polynomials (37, 21) and 
rate ½. The used interleaver is a random one of size 20*60. Simulation results are 
represented on figure 2: 
-IJSCD: iter4 refers to a transmission chain with iterative joint source-channel 
decoding, with source perfect knowledge, at the forth iteration. 
-IJSCD+EM:iter i refers to a transmission chain with iterative joint source-channel 
decoding, with source statistics estimation, at the iteration i. 
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Fig.2. BER as a function of Eb/N0 for transmission systems without and with (IJSCD) (with 
and without estimation) 

We notice that for a BER of 3.10-4, a gain of 1.5dB in Eb/N0, is achieved by the 
iterative decoding system with source statistics estimation (DICSC+EM) comparing 
to the reference chain. The gain is more than 2dB, for the iterative decoding with 
perfect knowledge of source statistics. For a signal to noise ratio of 4dB, the BER is 
near 10-5 for the transmission system with iterative joint source-channel decoding 
(perfect knowledge statistics), and only about 3.10-4 for the reference chain. 
So we can conclude that the proposed transmission system, bring a strong gain in 
performances comparing to a classical system based on a separated source and 
channel decoding. 
 
 
5 Application to image transmission 

The majority of efficient image compression algorithms use a transformation, 
applied to the original signal, a quantization and an entropy coding. According to the 
choice of the transformation, the quantization and the entropy coding, many 
compression schemes have been proposed. One of the most used transformations for 
image coding is the Discrete Wavelet Transformation (DWT) [9]. 

 
5.1 DWT and SPIHT principle 

 
The discrete wavelet transformation is derived from the multiresolution analysis, 

developed by Stephane Mallat and Yves Meyer [10]. The aim of this theory is to 
decompose a signal into different resolutions. The lowest frequency subband contains 
the most important information of the image. The high frequency subbands constitute 
the image details.  

We use in our work, one of the most powerful wavelet-based image compression 
method: the SPIHT (Set Partitioning in Hierarchical Trees) [11]. It is an image 
compression algorithm exploiting the inherent similarities across subbands in a 
wavelet decomposition of an image. The SPIHT compression principle is based on the 
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use of the zero-trees, in the wavelet subbands in order to reduce redundancies 
between them. Spatial orientation trees are created; they contain all the wavelet 
coefficients at the same spatial locations in the finer resolution subbands. Fig.3 shows 
an example of spatial orientation trees in a typical three level subband decomposition. 
The wavelet coefficients are encoded according to their nature: root of a possible 
zero-tree or insignificant set, insignificant pixel and significant pixel. The significance 
map is efficiently encoded by exploiting the inter-subband correlations and the 
bitplane approach is retained to encode the refinement bits. The SPIHT algorithm is 
mainly based on the management of three lists (List of Insignificant Sets, List of 
Insignificant Pixels and List of Significant Pixels). An iterative process successively 
scans and encodes the coefficients of each spatiotemporal tree [11].  
 
 

 

 

 

 

 

 

 
Fig.3. Inter-subband dependencies used by the SPIHT algorithm. 

 
 
5.2 Proposed image transmission system  

 
    The block diagram of the proposed image transmission system is given in figure 4. 
In this system, we use an image compression algorithm based on the DWT. The 
Lowest Frequency Subband LFS is coded separately from the Highest Frequency 
Subbands HFS. This allows unequal error protection to be easily applied. Also, if only 
a few levels decomposition are used, the decoded LFS would give a reasonable 
approximation of the entire image. The wavelet coefficients in the LFS are scalar 
quantized and then DPCM encoded. The latter is done by first finding a predicted 
value, for each coefficient, the prediction of a sample is merely the value of the 
previous sample. The predicted value is then subtracted from the coefficient to give 
residual coefficient, which is typically encoded. The HFS are encoded by the SPIHT 
algorithm. The SPIHT coder provides good compression performance, but it is quite 
sensitive to bit errors. A convolutional code is then used for channel coding.  
    The DPCM encoder leads to correlation among the transmitted indexes that can be 
considered as a first order Markov process. The idea is to apply the iterative joint 
source-channel decoding method, described in section 3, to data issued from the 
DPCM encoding of the LFS, in order to improve the image decoding. In the system 
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that we propose, the wavelet coefficients of the LFS are scalar quantized and then 
DPCM encoded. Each obtained symbol is mapped into a binary code word. The 
resulting binary data are encoded using a recursive systematic convolutional code, 
and then transmitted over an AWGN channel. The iterative joint source-channel 
decoding method is applied at the receiver to decode the LFS data. The wavelet 
coefficients of the HFS subbands are coded by the SPIHT algorithm followed by a 
convolutional code. They are transmitted over the AWGN channel, then, they are 
decoded using the Viterbi algorithm followed by the SPIHT decoder. All subbands are 
regrouped. We finally apply a wavelet inverse transformation to restore the whole 
image. 
 

 
Fig.4. Proposed image transmission system 

 

5.3 Experimental results 
 

In all our simulations, the Lena image of size 512*512 pixels (8 bpp), is used as a 
test image. A three level wavelet decomposition is applied to the image, using the 9-7 
filters. So the number of wavelet coefficients in the LFS is equal to 4096. These 
coefficients are quantized by a uniform scalar quantizer and then DPCM encoded. 
Each obtained symbol is represented by a 7-bit binary code word. So we have a 
binary frame of 28672 bits representing the LFS data. This frame is shared into 32 
packets (each packet has a length of 896 bits). These packets are then encoded by a 
recursive systematic convolutional code with generator polynomials (37, 21) and rate 
½ . They are transmitted over an AWGN channel. The IJSCD method, described in 
section 2 is applied at the receiver to decode the LFS data. The number of iterations is 
fixed to 3. The wavelet coefficients of the HFS subbands are coded by the SPIHT 
algorithm followed by a convolutional code with generator polynomials (37, 21) and 
rate ½ . The rate at the output of the source coder is fixed to 1 bpp.  
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The results are averaged over 500 channel realizations. In order to visualize the 
contribution of iterative joint decoding, we compared performance in terms of PSNR 
of the lowest frequency subband (PSNR-LFS), for the two systems without and with 
IJSCD decoding and source statistics estimation. Let's recall that our system applies 
IJSCD only to the LFS data, and that our reference system uses a separate source and 
channel decoding for both LFS and HFS data. The figure 5 represents the variation of 
the PSNR of the lowest frequency subband (PSNR-LFS) according to the signal to 
noise ratio Eb/N0.  

 
 

Fig.5. PSNR of lowest frequency subband 

We can see that a significant gain in the PSNR of the LFS is obtained by using 
IJSCD. Indeed for a signal to noise ratio Eb/N0=4dB, we have a gain of about 8dB. 
The figure 6 represents the variation of the PSNR of the entire image according to the 
signal to noise ratio Eb/N0, for the image transmission systems without and with 
IJSCD and source statistics estimation.   

 
Fig.6. PSNR of the entire image 

We can note that a significant gain in PSNR is achieved by iterative joint source 
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channel decoding, comparing to classical decoding. This gain is about 1 dB for 
Eb/N0=5dB. 

   

6. Conclusions 

     An efficient joint source channel decoding method, implemented by an iterative 
algorithm, and applied to an image transmission system is stated in this paper. The 
principle of this iterative algorithm is inspired from the turbo codes one; it uses the 
Baum Welch algorithm to estimate the source parameters at the receiver. A 
convolutional code is used for channel coding. Simulation show that, in case of a 
correlated gaussian source transmission, iterative joint source-channel decoding leads 
to a significant performance gain, in comparison with classical decoding. This 
iterative decoding scheme is applied to an image transmission system based on a 
wavelet transformation and a DPCM coding of the LFS and a SPIHT coding of the 
HFS. Channel coding is performed with a convolutional code. The simulation results 
indicate that the use of iterative joint decoding for the LFS data, can improve the error 
resilience of the image transmission system. The primary area of future research is 
improving the source compression, by using a variable length code instead of the 
fixed length one. We can also use turbo codes to improve the error protection. 
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