
How to apply CBR methods in Web service
composition?

Soufiene Lajmi1, Chirine Ghedira2, and Khaled Ghedira1

1 SOIE/ University of Tunis, Tunisia
Soufiene.Lajmi@ensi.rnu.tn

Khaled.Ghedira@isg.rnu.tn

http://www.soie.isg.rnu.tn
2 Claude Bernard Lyon 1 University, France

Chirine.Ghedira@liris.cnrs.fr

http://www.liris.cnrs.fr

Abstract. The emergence of web services as a new technology support-
ing the future Web has motivated several researchers to investigate in
this field. In addition, the possibility of selecting and integrating Web ser-
vices, in or between organizations, is very useful for the improvement of
their profitabilities. In such a case, we introduce the term of web service
composition. In this paper, we propose an approach called WeSCo CBR
(Web Service Composition founded on Case Based Reasoning) that aims
at enhancing the process of web service composition by using case based
reasoning technique which originates from artificial intelligence. Further-
more, we regard efficient description and management of information
semantics as a major requirement to enable semantic interoperability.
We opt to integrate ontology so that we can apply a reasoning to help
perform meaningful web service composition.

Key words: Web Services (WS), Web Service Composition, Case-Based
Reasoning (CBR), Ontology

1 Introduction

With the proliferation of Web services in the last years, distributed architectures
have seen a real development. Indeed, not only does WS ensure the interoper-
ability between applications which are supported by heterogeneous systems, but
also their composition appears as an important strategy to provide more complex
and useful solutions [16].

Composition addresses the situation of a request that cannot be answered
by existing and/or elementary WS, whilst it has favored the re-use and the cre-
ation of services. However, the simple use of the existing WS standards (such
as Simple Object Access Protocol SOAP [1], Web Service Description Language
WSDL [15] and Universal Description, Discovery and Integration protocol UDDI
[3]) does not ensure a dynamic and efficient composition. In [20], authors have
discussed two approaches: industry approach and semantic web approach. For

2-9525435-1 © SITIS 2006 - 230 -

http://www.u-bourgogne.fr/SITIS

the first one, many research issues, considering process description specifications,
have been proposed such as WSFL [5], Xlang [6], BPEL4WS [7]. However, none
of these suggested specifications actually treat the dynamic business process cre-
ation. Indeed, one of the requirements imposed by these specifications is that
the process must be pre-defined. For the semantic web solution, several initia-
tives have proposed languages and frameworks such as Web Services Modelling
Ontology WSMO [14], WSDL-S [17] which aim at integrating a semantic level
to describe web services in order to improve the WS composition process or
OWL-S [13] language which has defined Service class to model WS with the
properties presents, describedBy and supports. OWL-S ontology is divided into
three sub-ontologies: the Service Profile to describe what the service can do, the
ServiceModel to describe the control flow and dataflow and the ServiceGrounding
to specify the details of how a service can be acceded.

Despite these efforts, the WS composition is still a complex task and is beyond
the human ability to make the composition plan manually. Semi-automated/fully
dynamic web services composition hence presents yet a real challenge.

A crucial step in the process of developing applications based on WS is the
WS discovery. It consists in finding the WS that fulfils better a user request.
The main obstacle affecting this step is the huge number of the available WS.
A study on the WS discovery mecanisms has been done in [18]. In our work, for
the WS discovery, we are only interested in reducing the search space of WS.
Thus, the first WS in the space will be selected.

In this paper, we present the WeSCo CBR approach and demonstrate how
CBR techniques are applied for semi-automated WS composition. Our contribu-
tion consists of: 1) the definition of an abstract level defined by a set of domain
activities in order to reduce the search space of WS, 2) a method to build an
abstract process (through a set of similarity computation procedures according
to the CBR techniques) and then a composite WS.

The rest of this paper is organized as follows: section 2 motivates the adop-
tion of the ontology in conjunction with the CBR technique, section 3 deals with
the foundations and principles of our approach, section 4 presents the implemen-
tation of the system, section 5 discusses related work, and finally, we present our
conclusions and discuss future research in section 6.

2 Background

2.1 Motivating Scenario

Our scenario concerns the medical field. To illustrate the goals of our proposal,
we consider a request for a medical diagnosis of the early detection of cardiac
ischemia and arrhythmia. This request consists in carrying out a cardiologic
diagnosis of a patient, starting from the analysis of his electrocardiogram (ECG).
In fact, a patient has a Portable ECG Monitor (PEM), which is used to detect
and manage any cardiac event. When the patient feels a chest pain, he turns
on the PEM so his ECG is recorded. The PEM starts with a serial analysis of

- 231 -

this record and compares it with the referenced ECG. The PEM service can
suspect any cardiac problems and should look for a call center service to send an
alert, if needed. The alert triggers a WS whose role is to find a first-aid medical
center close to the patient’s current location. Processing both the recorded and
referenced ECG, the selected medical center identifies the type of alert: severe
or minor.

Without the use of the abstract activities, the response to this request re-
quires its comparison with the whole content of the repository of the actual WS
(even those which do not have any relationship with the medical diagnosis). This
explains the difficulty and the high cost of discovery and selection tasks of the
actual WS which covers this request.

By abstract activity, we mean a concept, described in an ontology, which
presents a set of real services having the same functionality. Thus, the fact of
using an abstract process (a set of ordered abstract activities) facilitates the
discovery and selection tasks by reducing the scope of search. Whenever an
abstract process is required, it is sufficient to start, for each activity, a search
for the WS represented by this activity.

2.2 Why using the Case-Based Reasoning?

Our adoption of the Case-based reasoning is supported by various reasons. First,
Case-based reasoning [11, 19] is a problem solving paradigm which, in many
respects, is fundamentally different from other major AI approaches. Indeed,
CBR is the process of solving new problems based on the solutions of similar
past problems. In other terms, instead of relying solely on general knowledge
of a problem domain, or making associations along generalized relationships
between problem descriptors and conclusions, CBR is able to utilize the specific
knowledge of previously experienced, concrete problem cases. A new problem is
solved by finding a similar past case, and reusing it in the new problem case.
Second, CBR is also an approach to incremental, sustained learning, since a
new experience is carried out each time a problem has been solved, making it
immediately available for future problem solving. Finally, it has been argued
that CBR is not only a powerful method for computer reasoning, but also a
pervasive behavior in every day human problem solving.

In our study, we propose to apply the CBR method, combined with the use
of OWL-S as a language to describe and develop the abstract processes. This
type of reasoning consists in finding, in the case base, cases similar to a new
user request. In addition, we estimate that the use of ontology is very important
for the achievement of a composition platform. Indeed, ontology provides a rich
description of the resources which allows to improve the search for the most
relevant services and their selections. Moreover, the OWL-S enables the auto-
matically discovery, execution, composition, and interoperability WS [20]. Once
the relevant services are selected, the last stage is the construction of a composite
web service. In the next section, we present the architecture of WeSCO CBR.

- 232 -

3 A proposal for web service composition based on CBR

In this section, we briefly present the architecture of WeSCo CBR, next we will
proceed with the description of the use of CBR for the semi-automated WS
composition.

3.1 WeSCO CBR

In [4], we have presented the architecture of our proposal which consists of
five components: 1) the Activity Discovery Engine which allows to find the set
of activities that best fits a user request, 2) the Abstract Process Binder whose
role is to build an abstract process made up of a set of abstract activities, 3)
the Web Service Discovery Engine which allows to determine-for each activity
of this process-the integrality of the actual semantic WS which can substitute
the activity, 4) the Selector which includes the selection mechanism3 of one of
these discovered semantic WS. This enables to make a comparison between the
requested activity and the integrality of the semantic WS proposed by the WS
Discovery Engine, 5) the Constructor which allows the transformation of the
abstract process built by the Abstract Process Binder in an executable process.
It is the component which generates an executable OWL-S process that can be
executed by the dedicated engine.

3.2 How to apply CBR in WeSCo CBR?

In order to simplify the request processing, we need to transform the user request
in an easy-to-handle language, understandable by the machine. The reformula-
tion step translates the request in an easy ontological formula. This task is
launched by the Activity Discovery Engine. To do so, we propose to divide the
request into three components defined as follows:

– Instances: A request can contain a set of data. These data can be considered
as values for attributes of one or more objects. The Instances part of the
request represents the classes inherited by these objects.

– Variables: A request can contain variables. These variables can be considered
as attributes of one or more classes which represent the Variables part of a
request.

– Activities: It is the set of abstract activities of a request. Indeed, the activities
of a request are deduced from variable and instance classes.

Once the Instances and Variables parts of the request are set, a search for
activities is launched by the Activity Discovery Engine. This engine allows us to
obtain all the activities which fit in the request. The activity search algorithm
shown below is based on the ontological description of the activities for the
medical domain classes. Activity search algorithm

3 Until now, the first web service among the selected ones will be selected

- 233 -

function CActivityList RequestActivities(CVariableList,

CInstanceList)

Input: CVariableList {List of Variable classes}

CInstanceList {List of Instance classes}

Output: CActivityList {List of Activities}

Begin

CActivityList result=new CActivityList()

CVar {Variable class}, CIns {Instance class}

for CVar in CVariableList do

result.add(CVar.ActivityList())

end for

for CIns in CInstanceList do

result.add(CIns.ActivityList())

end for

return(result)

End

For the needs of our study, we have defined a local ontology. It is described
in Fig. 1 and presents some concepts and activities and further relationships
between them. The ActivityList function shown below enables-for each concept-
to find activities that have relation with it.

OntoMedical
Doc

Class

OntoMedical
Human

Class

OntoMedical
Physicist

Class

OntoMedical
Domain

Class

OntoMedical
Patient

Class

OntoMedical
Blood

Class

OntoMedical
DocECG

Class
OntoDoc
Activity

Class

OntoDoc
AnalysisECG

Class

OntoDoc
AnalysisCardio

Class

OntoMedical
DocCardio

Class

OntoMedical
Activity

Class

OntoDoc
Search

Class

OntoDoc
Analysis

Class

subclassOf subclassOf

subclassOfsubclassOf

Restriction

hasActivity

ObjectProperty

hasActivity

ObjectPropertyRestriction

subclassOf subclassOf

subclassOf

subclassOf

subclassOf subclassOf

subclassOf

subclassOfsubclassOf

subclassOf

toClass

toClass

onProperty

onProperty

Fig. 1. Ontology illustration of the description of the activities and concepts in the
medical domain

ActivityList algorithm

function CActivity[] ActivityList()

Begin

- 234 -

OntModel ontology=owlModel.getOntModel();

RDFProperty HasActivity=owlModel.getRDFProperty("hasActivity");

String queryString = "SELECT ?domain, ?range\n"

+"WHERE (?domain onto:hasActivity ?range)\n"

+"AND ?domain=~/"+CV+"/"

+"USING onto FOR <http://127.0.0.1/MedicalField.owl#>" ;

Query query = new Query(queryString) ;

query.setSource(ontology);

QueryExecution qe = new QueryEngine(query) ;

Individual Ind;

QueryResults results = qe.exec() ;

for (Iterator iter = results ; iter.hasNext() ;)

{

ResultBinding res = (ResultBinding)iter.next() ;

Object range= res.get("range") ;

Object domain =res.get("domain") ;

Ind=ontology.getIndividual(range.toString());

Activities.add(Ind.getLocalName());

}

results.close() ;

return(Activities) ;

End

As mentioned before, our approach is based on CBR to construct the abstract
process made up of the request activities. We believe that an intelligent method
can provide better solutions. The CBR technique uses existing cases to provide a
process to a user’s request. In the first step, the proposed process is the solution
of the more similar case to the request. This solution may not use some required
services. To do so, we build-in the second step-another request composed of those
services. Finally, we obtain two processes. The first process will be adapted with
reference to the second. However, the use of CBR requires the identification of
a case, which needs to be represented by a model adapted to our problematic.
This modelling allows us to describe each component of a case. For the search of
similar cases and the selection of the relevant cases, we need the case similarity
computation and search procedures.

In the first part of this section, we define the representation of a case. In the
second part, we present the methods elaborated to calculate the similarities.

Case representation. According to Kolodner[11], regardless of the applica-
bility domain, a case has always the same components. These components are
a t-uple composed of a problem, a solution and possibly an evaluation. Like-
wise, in WeSCo CBR [4], a case is composed of the following three elements: 1)
the problem which is composed of four parts: user’s profile, activities, variable
classes and instance classes, 2) the solution which is the combination of a set of
activities, 3) the evaluation which is the relevance ratio of the solution. Due to
the existence of irrelevant cases which does not fit the user’s needs, we propose
evaluation criteria of the user to express his satisfaction degree to the suggested
process.

- 235 -

After the elaboration of the case modelling, it is necessary to establish the
discovery and selection procedures for the most relevant cases. In the following,
we deal with the problems of the search and selection of a case for a new request
presented by the user.

Similar case search system. For a new request, the re-use process consists in
looking for a memorized similar case and, if required, in evaluating and memoriz-
ing the new case. Moreover, we need to find, for each request, the most relevant
memorized case which can best fit this request. This process is composed of
the following stages: 1) Representation of the problem: for each new request,
we search the most relevant cases. This research is carried out according to the
request (problem). To do so, we express the request in the form of a new case
in order to be able to compare it with memorized former cases. This stage has
been processed in section 3.2, the following stages will be analyzed in this section.
2) Similarity computation: the most relevant case is generally given according
to its similarity with the new case. With this intention, we define methods for
similarity computation in order to guide the research. Accordingly, we propose
some methods to calculate the similarity between cases. Similarity computation
is done for the components (problem part) of the request. 3) Procedure of re-
search of the most relevant case: it uses the methods of similarity computation
to propose the most relevant case evaluated by procedures of search and similar-
ity described in this section. 4) Memorizing : action left for the user to judge if
the new case is interesting enough to memorize. In the same way, we propose to
the application user the choice to memorize its new case. The memorized case
is followed by an evaluation which will make it possible to refine the following
research. In [4], we have presented similarity computation between activities.
It is based on two algorithms. The first one allows to calculate the similarity
between two activities. The second concerns the case similarity computation in
terms of activities. In the next section, we present the similarity computation
between variable classes.

Similarity computation between variable classes. The variable classes
represent the second dimension for the calculation of similarity between a new
case and a memorized case. The similarity between two cases according to their
variable classes is expressed by the following formula:

Simv(NC, MC) =

NV∑

i=1

Simv(NCVi, MC)

max(NV, MV)
(1)

where

– NC is a new case;
– MC is a memorized case;
– NV and MV are, respectively, the number of NC variable classes and those

of MC variable classes;

- 236 -

– NCVi is a variable class of NC.

The similarity between a variable class of a new case and all variable classes of
a memorized case is equal to the maximum of the similarities between this class
with each variable class of the memorized case. The following formula presents
calculation of this similarity.

Simv(NCVi,MC) = max
j=1..MV

(Simv(NCVi,MCVj)) (2)

where MCVj is a class of variable of MC.
The similarity between two variable classes is expressed by the following

formula:

Simv(MCVi,MCVj) =

1 if MCVi = MCVj ,
xd if MCVi is a subclass

of MCVj ,
x2d if MCVj is a subclass

of MCVi,
x3d else.

(3)

d represents the maximum of the distances between NCVi and MCVj with
their common parent.
x = (2* the number of common properties between NCVi and MCVj) / sum of
the properties of NCVi and MCVj .

In the case base, we can have a very significant number of memorized cases.
However, it can happen that none of these cases answers exactly the request. In
this case, the case selected by the algorithms of search is a relevant case but it
requires some processing and modifications.

4 Implementation

An overview of the implementation details is presented in this section. We then
illustrate WeSCo CBR by using a scenario from the medical domain. All com-
ponents are implemented by jdk 1.5.0 using JBuilder 7.0. as a development
environment. We use existing semantic web tools, like OWL, OWL-S, Protege
3.0 and Jena 2.1 to provide the basic representation and reasoning technology.
Activities, Variable classes and Instance Classes are described using OWL whereas
we use OWL-S to create semantic WS. To save the cases, we have created a
MySQL database. The Constructor uses the OWL-S API to create a composite
WS from an abstract process provided by the Abstract Process Binder.
To reason on the ontology, we chose to use Jena 2.1 which is a Java API for
semantic web applications. This API deals with searching and reasoning on on-
tology such as the ones we have defined. To demonstrate the feasibility of our
proposal, we have developed a graphical user interface that allows to enter a
request. The user can launch the reformulation request process. An OWL file is
generated to describe the different components of the reformulated request. This
OWL file is then used by the Abstract Process Binder to generate the solution

- 237 -

of the user request.
We can show the solution proposed by our prototype. It can be modified manu-
ally by the user and adapted by creating another request for a new sub-problem.

5 Related Work

Recently time, several approaches to applying AI techniques to the web service
composition problem have been published. Other approches are based on the
workflow. EFlow [8] uses a static workflow generation method. A composite ser-
vice is modelled by a graph that defines the order of execution. In Meteors [9],
the authors have proposed an approach which consists in adding the semantic to
the current standards such as UDDI, WSDL and BPEL. However, those two ini-
tiatives require a predefined workflow, which can be a major disadvantage. Some
other work is based on the technique of artificial intelligence planning. SWORD
[10] presents one of these works. However, SWORD does not use the emerg-
ing service description standards. [15] has presented an approach that supports
running views over the specification of a composite web service. This approach
is based on context and constraints to generate a derived state chart diagram4

from an other state chart (initial or derived). In fact, if the constraints on an in-
coming transition of a service chart diagram is not satisfied in a certain context,
then this service chart diagram will be excluded from the derived state chart di-
agram. However, a derived specification does not accept extra services through
their service chart diagrams. In our proposal, we suggest to use an approach
based primarily on the Case Based Reasoning (CBR) that has been dealt with
in paragraph 3.2. So that, we can integrate existing cases to generate a compos-
ite web service which responds to the user request. However, the selection of the
first discovered web service can provide an unsuitable solution. So, the selection
mechanism must be improved.

6 Conclusion and future work

Recently, several technologies and languages interfering in various stages of WS
life cycle have been developed. However, those single technologies do not allow
an effective and dynamic composition of WS. For this purpose, WeSCo CBR
combines the CBR technique and the semantic description of Web services. It
is characterized by the following advantages: firstly, the use of ontology and de-
scription semantics of the activities and the services allowing the best reasoning
in the various steps of the composition. Secondly, it allows a dynamic composi-
tion of WS starting from a user’s request. Our future works will focus primarily
on the distribution of WeSCo CBR using a multi-agent system. Indeed, we esti-
mate that the distribution of the repository of activities, as well as the repository
of the WS is very important. Therefore, we propose to use intelligent agents to
decentralize the WS composition process.
4 A state chart diagram is used as a means for modelling and specifying the component

web services of a composite service

- 238 -

References

1. Moreau, J.J.: Introduction to soap awalkthrough of core technical concepts. XML
EUROPE (2004)

2. Mantek, F.: What’s new in wsdl. Wrox Conferences (2002)
3. Chauvet, J.M.: Services web avec soap, wsdl, uddi, ebxml. Paris: Eyrolles,

Vol. 99:524p. Paris (2002)
4. Lajmi, S., Ghedira, C., Ghedira, K., Benslimane, D.: Wesco cbr: How to com-

pose web services via case based reasoning. The IEEE International Symposium on
Service-Oriented Applications, Integration and Collaboration held with the IEEE
International Conference on e-Business Engineering (ICEBE 2006), Shanghai, China
(October 2006)

5. Leymann, F.: Web services flow language (wsfl 1.0). (May 2001)
6. Levy, D.: Coordination of web services : langages de description et plate-formes

d’exécution. (Septembre 2002)
7. Juric, M., Sarang, P., Mathew, B.: Business process execution language for web

services. page 270 (octobre 2004)
8. Casati, F., Ilnicki, S., Jin L.: Adaptive and dynamic service composition in eflow.

In Proceedings of 12th International Conference on Advanced Information Systems
Engineering(CAiSE), Stockholm, Sweden (June 2000)

9. Aggarwal, R., Verma, K., Sheth, A., Miller, J., Milnor, W.: Constraint driven web
service composition in meteor-s. Submitted to 2004 IEEE International Conference
on Services Computing (2004)

10. Ponnekanti, S.R.,Fox, A.: Sword: A developer toolkit for web service composition.
In Proceedings of the 11th World Wide Web Conference, Honolulu, HI, USA (2002).

11. Kolodner, J.L.: Case-based reasoning. San Mateo, CA : Morgan Kaufman, (7),
(1993).

12. Limthanmaphon, B., Zhang, Y.: Web service composition with case-based reason-
ing. In Proceedings of The 14th Australasian Database Conference (February 2003)

13. Burstein, M., Ankolenkar, A., Paolucci, M., Srinivasan, N.: Owl-s: Semantic
markup for web services (2003)

14. Arroyo, S., Stollberg, M.: WSMO primer. SMO Delivrable D3.1, DERI Working
Draft, Technical reportl (2004)

15. Benslimane, D., Maamar, Z., Ghedira, C.: A view based approach for tracking
composite web services. ECOWS, Vxj, Sweden, IEEE Computer Society (2005)

16. Ghedira, C., Maamar, Z., Benslimane, D. On composing web services for coalition
operations - concepts and operations-. International Journal Information & Security.
Special issue on Architectures for Coalition Operations (2005) 16:79–92

17. Miller, J., Verma, K., Shelth, A., Aggarwal, R., Sivashanmugan, K.: WSDL-S:
Adding semantics to wsdlwhite paper. Technical report, Large Scale Distributed
Information Systems. (2004)

18. Garofalakis, J., Panagis, Y., Sakkopoulos, E., Tsakalidis, A.: Web Service Discovery
Mechanisms: Looking for a Needle in a Haystack?. International Workshop on Web
Engineering. (2004)

19. Leake, B.: CBR in Context: The Present and Future. In Leake, D., editor, Case-
Based Reasoning: Experiences, Lessons, and Future Directions, AAAI Press/MIT
Press. (1996)

20. Srivastava, B., Koehler, J.: Web Service Composition Current Solutions and Open
Problems. Workshop on Planning for Web Services ICAPS (2003)

- 239 -

